From 94f94260ace13688285fc8c62687079b26c18854 Mon Sep 17 00:00:00 2001 From: jaseg Date: Sun, 20 Dec 2020 15:18:02 +0100 Subject: Submodule-cache WIP --- .../FilteringFunctions/arm_conv_partial_q31.c | 616 --------------------- 1 file changed, 616 deletions(-) delete mode 100644 fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c') diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c deleted file mode 100644 index 3a108e0..0000000 --- a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c +++ /dev/null @@ -1,616 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_conv_partial_q31.c - * Description: Partial convolution of Q31 sequences - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: Cortex-M cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "arm_math.h" - -/** - * @ingroup groupFilters - */ - -/** - * @addtogroup PartialConv - * @{ - */ - -/** - * @brief Partial convolution of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - * - * See arm_conv_partial_fast_q31() for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. - */ - -arm_status arm_conv_partial_q31( - q31_t * pSrcA, - uint32_t srcALen, - q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst, - uint32_t firstIndex, - uint32_t numPoints) -{ - - -#if defined (ARM_MATH_DSP) - - /* Run the below code for Cortex-M4 and Cortex-M3 */ - - q31_t *pIn1; /* inputA pointer */ - q31_t *pIn2; /* inputB pointer */ - q31_t *pOut = pDst; /* output pointer */ - q31_t *px; /* Intermediate inputA pointer */ - q31_t *py; /* Intermediate inputB pointer */ - q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ - q63_t sum, acc0, acc1, acc2; /* Accumulator */ - q31_t x0, x1, x2, c0; - uint32_t j, k, count, check, blkCnt; - int32_t blockSize1, blockSize2, blockSize3; /* loop counter */ - arm_status status; /* status of Partial convolution */ - - - /* Check for range of output samples to be calculated */ - if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) - { - /* Set status as ARM_MATH_ARGUMENT_ERROR */ - status = ARM_MATH_ARGUMENT_ERROR; - } - else - { - - /* The algorithm implementation is based on the lengths of the inputs. */ - /* srcB is always made to slide across srcA. */ - /* So srcBLen is always considered as shorter or equal to srcALen */ - if (srcALen >= srcBLen) - { - /* Initialization of inputA pointer */ - pIn1 = pSrcA; - - /* Initialization of inputB pointer */ - pIn2 = pSrcB; - } - else - { - /* Initialization of inputA pointer */ - pIn1 = pSrcB; - - /* Initialization of inputB pointer */ - pIn2 = pSrcA; - - /* srcBLen is always considered as shorter or equal to srcALen */ - j = srcBLen; - srcBLen = srcALen; - srcALen = j; - } - - /* Conditions to check which loopCounter holds - * the first and last indices of the output samples to be calculated. */ - check = firstIndex + numPoints; - blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; - blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; - blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex); - blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 : - (int32_t) numPoints) : 0; - blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + - (int32_t) firstIndex); - blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; - - /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ - /* The function is internally - * divided into three stages according to the number of multiplications that has to be - * taken place between inputA samples and inputB samples. In the first stage of the - * algorithm, the multiplications increase by one for every iteration. - * In the second stage of the algorithm, srcBLen number of multiplications are done. - * In the third stage of the algorithm, the multiplications decrease by one - * for every iteration. */ - - /* Set the output pointer to point to the firstIndex - * of the output sample to be calculated. */ - pOut = pDst + firstIndex; - - /* -------------------------- - * Initializations of stage1 - * -------------------------*/ - - /* sum = x[0] * y[0] - * sum = x[0] * y[1] + x[1] * y[0] - * .... - * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] - */ - - /* In this stage the MAC operations are increased by 1 for every iteration. - The count variable holds the number of MAC operations performed. - Since the partial convolution starts from firstIndex - Number of Macs to be performed is firstIndex + 1 */ - count = 1U + firstIndex; - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + firstIndex; - py = pSrc2; - - /* ------------------------ - * Stage1 process - * ----------------------*/ - - /* The first loop starts here */ - while (blockSize1 > 0) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - /* x[0] * y[srcBLen - 1] */ - sum += (q63_t) * px++ * (*py--); - /* x[1] * y[srcBLen - 2] */ - sum += (q63_t) * px++ * (*py--); - /* x[2] * y[srcBLen - 3] */ - sum += (q63_t) * px++ * (*py--); - /* x[3] * y[srcBLen - 4] */ - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the count is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q31_t) (sum >> 31); - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = ++pSrc2; - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* -------------------------- - * Initializations of stage2 - * ------------------------*/ - - /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] - * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] - * .... - * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] - */ - - /* Working pointer of inputA */ - if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) - { - px = pIn1 + firstIndex - srcBLen + 1; - } - else - { - px = pIn1; - } - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1U); - py = pSrc2; - - /* count is index by which the pointer pIn1 to be incremented */ - count = 0U; - - /* ------------------- - * Stage2 process - * ------------------*/ - - /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. - * So, to loop unroll over blockSize2, - * srcBLen should be greater than or equal to 4 */ - if (srcBLen >= 4U) - { - /* Loop unroll over blkCnt */ - - blkCnt = blockSize2 / 3; - while (blkCnt > 0U) - { - /* Set all accumulators to zero */ - acc0 = 0; - acc1 = 0; - acc2 = 0; - - /* read x[0], x[1] samples */ - x0 = *(px++); - x1 = *(px++); - - /* Apply loop unrolling and compute 3 MACs simultaneously. */ - k = srcBLen / 3; - - /* First part of the processing with loop unrolling. Compute 3 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 2 samples. */ - do - { - /* Read y[srcBLen - 1] sample */ - c0 = *(py); - - /* Read x[2] sample */ - x2 = *(px); - - /* Perform the multiply-accumulates */ - /* acc0 += x[0] * y[srcBLen - 1] */ - acc0 += (q63_t) x0 *c0; - /* acc1 += x[1] * y[srcBLen - 1] */ - acc1 += (q63_t) x1 *c0; - /* acc2 += x[2] * y[srcBLen - 1] */ - acc2 += (q63_t) x2 *c0; - - /* Read y[srcBLen - 2] sample */ - c0 = *(py - 1U); - - /* Read x[3] sample */ - x0 = *(px + 1U); - - /* Perform the multiply-accumulate */ - /* acc0 += x[1] * y[srcBLen - 2] */ - acc0 += (q63_t) x1 *c0; - /* acc1 += x[2] * y[srcBLen - 2] */ - acc1 += (q63_t) x2 *c0; - /* acc2 += x[3] * y[srcBLen - 2] */ - acc2 += (q63_t) x0 *c0; - - /* Read y[srcBLen - 3] sample */ - c0 = *(py - 2U); - - /* Read x[4] sample */ - x1 = *(px + 2U); - - /* Perform the multiply-accumulates */ - /* acc0 += x[2] * y[srcBLen - 3] */ - acc0 += (q63_t) x2 *c0; - /* acc1 += x[3] * y[srcBLen - 2] */ - acc1 += (q63_t) x0 *c0; - /* acc2 += x[4] * y[srcBLen - 2] */ - acc2 += (q63_t) x1 *c0; - - - px += 3U; - - py -= 3U; - - } while (--k); - - /* If the srcBLen is not a multiple of 3, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen - (3 * (srcBLen / 3)); - - while (k > 0U) - { - /* Read y[srcBLen - 5] sample */ - c0 = *(py--); - - /* Read x[7] sample */ - x2 = *(px++); - - /* Perform the multiply-accumulates */ - /* acc0 += x[4] * y[srcBLen - 5] */ - acc0 += (q63_t) x0 *c0; - /* acc1 += x[5] * y[srcBLen - 5] */ - acc1 += (q63_t) x1 *c0; - /* acc2 += x[6] * y[srcBLen - 5] */ - acc2 += (q63_t) x2 *c0; - - /* Reuse the present samples for the next MAC */ - x0 = x1; - x1 = x2; - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q31_t) (acc0 >> 31); - *pOut++ = (q31_t) (acc1 >> 31); - *pOut++ = (q31_t) (acc2 >> 31); - - /* Increment the pointer pIn1 index, count by 3 */ - count += 3U; - - /* Update the inputA and inputB pointers for next MAC calculation */ - if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) - { - px = pIn1 + firstIndex - srcBLen + 1 + count; - } - else - { - px = pIn1 + count; - } - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - - /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here. - ** No loop unrolling is used. */ - blkCnt = blockSize2 - 3 * (blockSize2 / 3); - - while (blkCnt > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - /* Perform the multiply-accumulates */ - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q31_t) (sum >> 31); - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) - { - px = pIn1 + firstIndex - srcBLen + 1 + count; - } - else - { - px = pIn1 + count; - } - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - else - { - /* If the srcBLen is not a multiple of 4, - * the blockSize2 loop cannot be unrolled by 4 */ - blkCnt = (uint32_t) blockSize2; - - while (blkCnt > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* srcBLen number of MACS should be performed */ - k = srcBLen; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q31_t) (sum >> 31); - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) - { - px = pIn1 + firstIndex - srcBLen + 1 + count; - } - else - { - px = pIn1 + count; - } - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - - - /* -------------------------- - * Initializations of stage3 - * -------------------------*/ - - /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] - * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] - * .... - * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] - * sum += x[srcALen-1] * y[srcBLen-1] - */ - - /* In this stage the MAC operations are decreased by 1 for every iteration. - The blockSize3 variable holds the number of MAC operations performed */ - count = srcBLen - 1U; - - /* Working pointer of inputA */ - pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); - px = pSrc1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1U); - py = pSrc2; - - /* ------------------- - * Stage3 process - * ------------------*/ - - while (blockSize3 > 0) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum += (q63_t) * px++ * (*py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q31_t) (sum >> 31); - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pSrc2; - - /* Decrement the MAC count */ - count--; - - /* Decrement the loop counter */ - blockSize3--; - - } - - /* set status as ARM_MATH_SUCCESS */ - status = ARM_MATH_SUCCESS; - } - - /* Return to application */ - return (status); - -#else - - /* Run the below code for Cortex-M0 */ - - q31_t *pIn1 = pSrcA; /* inputA pointer */ - q31_t *pIn2 = pSrcB; /* inputB pointer */ - q63_t sum; /* Accumulator */ - uint32_t i, j; /* loop counters */ - arm_status status; /* status of Partial convolution */ - - /* Check for range of output samples to be calculated */ - if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) - { - /* Set status as ARM_ARGUMENT_ERROR */ - status = ARM_MATH_ARGUMENT_ERROR; - } - else - { - /* Loop to calculate convolution for output length number of values */ - for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++) - { - /* Initialize sum with zero to carry on MAC operations */ - sum = 0; - - /* Loop to perform MAC operations according to convolution equation */ - for (j = 0; j <= i; j++) - { - /* Check the array limitations */ - if (((i - j) < srcBLen) && (j < srcALen)) - { - /* z[i] += x[i-j] * y[j] */ - sum += ((q63_t) pIn1[j] * (pIn2[i - j])); - } - } - - /* Store the output in the destination buffer */ - pDst[i] = (q31_t) (sum >> 31U); - } - /* set status as ARM_SUCCESS as there are no argument errors */ - status = ARM_MATH_SUCCESS; - } - return (status); - -#endif /* #if defined (ARM_MATH_DSP) */ - -} - -/** - * @} end of PartialConv group - */ -- cgit