From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../DSP/Source/FilteringFunctions/arm_conv_f32.c | 635 +++++++++++++++++++++ 1 file changed, 635 insertions(+) create mode 100644 fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c') diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c new file mode 100644 index 0000000..906f7ab --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c @@ -0,0 +1,635 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_conv_f32.c + * Description: Convolution of floating-point sequences + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupFilters + */ + +/** + * @defgroup Conv Convolution + * + * Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector. + * Convolution is similar to correlation and is frequently used in filtering and data analysis. + * The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types. + * The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3. + * + * \par Algorithm + * Let a[n] and b[n] be sequences of length srcALen and srcBLen samples respectively. + * Then the convolution + * + *
+ *                   c[n] = a[n] * b[n]
+ * 
+ * + * \par + * is defined as + * \image html ConvolutionEquation.gif + * \par + * Note that c[n] is of length srcALen + srcBLen - 1 and is defined over the interval n=0, 1, 2, ..., srcALen + srcBLen - 2. + * pSrcA points to the first input vector of length srcALen and + * pSrcB points to the second input vector of length srcBLen. + * The output result is written to pDst and the calling function must allocate srcALen+srcBLen-1 words for the result. + * + * \par + * Conceptually, when two signals a[n] and b[n] are convolved, + * the signal b[n] slides over a[n]. + * For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together. + * + * \par + * Note that convolution is a commutative operation: + * + *
+ *                   a[n] * b[n] = b[n] * a[n].
+ * 
+ * + * \par + * This means that switching the A and B arguments to the convolution functions has no effect. + * + * Fixed-Point Behavior + * + * \par + * Convolution requires summing up a large number of intermediate products. + * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation. + * Refer to the function specific documentation below for further details of the particular algorithm used. + * + * + * Fast Versions + * + * \par + * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires + * the input signals should be scaled down to avoid intermediate overflows. + * + * + * Opt Versions + * + * \par + * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation. + * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions + */ + +/** + * @addtogroup Conv + * @{ + */ + +/** + * @brief Convolution of floating-point sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + * @return none. + */ + +void arm_conv_f32( + float32_t * pSrcA, + uint32_t srcALen, + float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst) +{ + + +#if defined (ARM_MATH_DSP) + + /* Run the below code for Cortex-M4 and Cortex-M3 */ + + float32_t *pIn1; /* inputA pointer */ + float32_t *pIn2; /* inputB pointer */ + float32_t *pOut = pDst; /* output pointer */ + float32_t *px; /* Intermediate inputA pointer */ + float32_t *py; /* Intermediate inputB pointer */ + float32_t *pSrc1, *pSrc2; /* Intermediate pointers */ + float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ + float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ + uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */ + + /* The algorithm implementation is based on the lengths of the inputs. */ + /* srcB is always made to slide across srcA. */ + /* So srcBLen is always considered as shorter or equal to srcALen */ + if (srcALen >= srcBLen) + { + /* Initialization of inputA pointer */ + pIn1 = pSrcA; + + /* Initialization of inputB pointer */ + pIn2 = pSrcB; + } + else + { + /* Initialization of inputA pointer */ + pIn1 = pSrcB; + + /* Initialization of inputB pointer */ + pIn2 = pSrcA; + + /* srcBLen is always considered as shorter or equal to srcALen */ + j = srcBLen; + srcBLen = srcALen; + srcALen = j; + } + + /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ + /* The function is internally + * divided into three stages according to the number of multiplications that has to be + * taken place between inputA samples and inputB samples. In the first stage of the + * algorithm, the multiplications increase by one for every iteration. + * In the second stage of the algorithm, srcBLen number of multiplications are done. + * In the third stage of the algorithm, the multiplications decrease by one + * for every iteration. */ + + /* The algorithm is implemented in three stages. + The loop counters of each stage is initiated here. */ + blockSize1 = srcBLen - 1U; + blockSize2 = srcALen - (srcBLen - 1U); + blockSize3 = blockSize1; + + /* -------------------------- + * initializations of stage1 + * -------------------------*/ + + /* sum = x[0] * y[0] + * sum = x[0] * y[1] + x[1] * y[0] + * .... + * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] + */ + + /* In this stage the MAC operations are increased by 1 for every iteration. + The count variable holds the number of MAC operations performed */ + count = 1U; + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + py = pIn2; + + + /* ------------------------ + * Stage1 process + * ----------------------*/ + + /* The first stage starts here */ + while (blockSize1 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0.0f; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = count >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* x[0] * y[srcBLen - 1] */ + sum += *px++ * *py--; + + /* x[1] * y[srcBLen - 2] */ + sum += *px++ * *py--; + + /* x[2] * y[srcBLen - 3] */ + sum += *px++ * *py--; + + /* x[3] * y[srcBLen - 4] */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* If the count is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = count % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = sum; + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = pIn2 + count; + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* -------------------------- + * Initializations of stage2 + * ------------------------*/ + + /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] + * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] + * .... + * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] + */ + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* count is index by which the pointer pIn1 to be incremented */ + count = 0U; + + /* ------------------- + * Stage2 process + * ------------------*/ + + /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. + * So, to loop unroll over blockSize2, + * srcBLen should be greater than or equal to 4 */ + if (srcBLen >= 4U) + { + /* Loop unroll over blockSize2, by 4 */ + blkCnt = blockSize2 >> 2U; + + while (blkCnt > 0U) + { + /* Set all accumulators to zero */ + acc0 = 0.0f; + acc1 = 0.0f; + acc2 = 0.0f; + acc3 = 0.0f; + + /* read x[0], x[1], x[2] samples */ + x0 = *(px++); + x1 = *(px++); + x2 = *(px++); + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + do + { + /* Read y[srcBLen - 1] sample */ + c0 = *(py--); + + /* Read x[3] sample */ + x3 = *(px); + + /* Perform the multiply-accumulate */ + /* acc0 += x[0] * y[srcBLen - 1] */ + acc0 += x0 * c0; + + /* acc1 += x[1] * y[srcBLen - 1] */ + acc1 += x1 * c0; + + /* acc2 += x[2] * y[srcBLen - 1] */ + acc2 += x2 * c0; + + /* acc3 += x[3] * y[srcBLen - 1] */ + acc3 += x3 * c0; + + /* Read y[srcBLen - 2] sample */ + c0 = *(py--); + + /* Read x[4] sample */ + x0 = *(px + 1U); + + /* Perform the multiply-accumulate */ + /* acc0 += x[1] * y[srcBLen - 2] */ + acc0 += x1 * c0; + /* acc1 += x[2] * y[srcBLen - 2] */ + acc1 += x2 * c0; + /* acc2 += x[3] * y[srcBLen - 2] */ + acc2 += x3 * c0; + /* acc3 += x[4] * y[srcBLen - 2] */ + acc3 += x0 * c0; + + /* Read y[srcBLen - 3] sample */ + c0 = *(py--); + + /* Read x[5] sample */ + x1 = *(px + 2U); + + /* Perform the multiply-accumulates */ + /* acc0 += x[2] * y[srcBLen - 3] */ + acc0 += x2 * c0; + /* acc1 += x[3] * y[srcBLen - 2] */ + acc1 += x3 * c0; + /* acc2 += x[4] * y[srcBLen - 2] */ + acc2 += x0 * c0; + /* acc3 += x[5] * y[srcBLen - 2] */ + acc3 += x1 * c0; + + /* Read y[srcBLen - 4] sample */ + c0 = *(py--); + + /* Read x[6] sample */ + x2 = *(px + 3U); + px += 4U; + + /* Perform the multiply-accumulates */ + /* acc0 += x[3] * y[srcBLen - 4] */ + acc0 += x3 * c0; + /* acc1 += x[4] * y[srcBLen - 4] */ + acc1 += x0 * c0; + /* acc2 += x[5] * y[srcBLen - 4] */ + acc2 += x1 * c0; + /* acc3 += x[6] * y[srcBLen - 4] */ + acc3 += x2 * c0; + + + } while (--k); + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Read y[srcBLen - 5] sample */ + c0 = *(py--); + + /* Read x[7] sample */ + x3 = *(px++); + + /* Perform the multiply-accumulates */ + /* acc0 += x[4] * y[srcBLen - 5] */ + acc0 += x0 * c0; + /* acc1 += x[5] * y[srcBLen - 5] */ + acc1 += x1 * c0; + /* acc2 += x[6] * y[srcBLen - 5] */ + acc2 += x2 * c0; + /* acc3 += x[7] * y[srcBLen - 5] */ + acc3 += x3 * c0; + + /* Reuse the present samples for the next MAC */ + x0 = x1; + x1 = x2; + x2 = x3; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = acc0; + *pOut++ = acc1; + *pOut++ = acc2; + *pOut++ = acc3; + + /* Increment the pointer pIn1 index, count by 4 */ + count += 4U; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + + /* Decrement the loop counter */ + blkCnt--; + } + + + /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize2 % 0x4U; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0.0f; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += *px++ * *py--; + sum += *px++ * *py--; + sum += *px++ * *py--; + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = sum; + + /* Increment the MAC count */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + else + { + /* If the srcBLen is not a multiple of 4, + * the blockSize2 loop cannot be unrolled by 4 */ + blkCnt = blockSize2; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0.0f; + + /* srcBLen number of MACS should be performed */ + k = srcBLen; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = sum; + + /* Increment the MAC count */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + + + /* -------------------------- + * Initializations of stage3 + * -------------------------*/ + + /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] + * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] + * .... + * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] + * sum += x[srcALen-1] * y[srcBLen-1] + */ + + /* In this stage the MAC operations are decreased by 1 for every iteration. + The blockSize3 variable holds the number of MAC operations performed */ + + /* Working pointer of inputA */ + pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); + px = pSrc1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* ------------------- + * Stage3 process + * ------------------*/ + + while (blockSize3 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0.0f; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = blockSize3 >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ + sum += *px++ * *py--; + + /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ + sum += *px++ * *py--; + + /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ + sum += *px++ * *py--; + + /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = blockSize3 % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + /* sum += x[srcALen-1] * y[srcBLen-1] */ + sum += *px++ * *py--; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = sum; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pSrc2; + + /* Decrement the loop counter */ + blockSize3--; + } + +#else + + /* Run the below code for Cortex-M0 */ + + float32_t *pIn1 = pSrcA; /* inputA pointer */ + float32_t *pIn2 = pSrcB; /* inputB pointer */ + float32_t sum; /* Accumulator */ + uint32_t i, j; /* loop counters */ + + /* Loop to calculate convolution for output length number of times */ + for (i = 0U; i < ((srcALen + srcBLen) - 1U); i++) + { + /* Initialize sum with zero to carry out MAC operations */ + sum = 0.0f; + + /* Loop to perform MAC operations according to convolution equation */ + for (j = 0U; j <= i; j++) + { + /* Check the array limitations */ + if ((((i - j) < srcBLen) && (j < srcALen))) + { + /* z[i] += x[i-j] * y[j] */ + sum += pIn1[j] * pIn2[i - j]; + } + } + /* Store the output in the destination buffer */ + pDst[i] = sum; + } + +#endif /* #if defined (ARM_MATH_DSP) */ + +} + +/** + * @} end of Conv group + */ -- cgit