From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../arm_signal_converge_example_f32.c | 259 +++++++++++++++++++++ 1 file changed, 259 insertions(+) create mode 100644 fw/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c') diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c new file mode 100644 index 0000000..d984e2f --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c @@ -0,0 +1,259 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010-2012 ARM Limited. All rights reserved. +* +* $Date: 17. January 2013 +* $Revision: V1.4.0 +* +* Project: CMSIS DSP Library +* Title: arm_signal_converge_example_f32.c +* +* Description: Example code demonstrating convergence of an adaptive +* filter. +* +* Target Processor: Cortex-M4/Cortex-M3 +* +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions +* are met: +* - Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* - Redistributions in binary form must reproduce the above copyright +* notice, this list of conditions and the following disclaimer in +* the documentation and/or other materials provided with the +* distribution. +* - Neither the name of ARM LIMITED nor the names of its contributors +* may be used to endorse or promote products derived from this +* software without specific prior written permission. +* +* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +* POSSIBILITY OF SUCH DAMAGE. + * -------------------------------------------------------------------- */ + +/** + * @ingroup groupExamples + */ + +/** + * @defgroup SignalConvergence Signal Convergence Example + * + * \par Description: + * \par + * Demonstrates the ability of an adaptive filter to "learn" the transfer function of + * a FIR lowpass filter using the Normalized LMS Filter, Finite Impulse + * Response (FIR) Filter, and Basic Math Functions. + * + * \par Algorithm: + * \par + * The figure below illustrates the signal flow in this example. Uniformly distributed white + * noise is passed through an FIR lowpass filter. The output of the FIR filter serves as the + * reference input of the adaptive filter (normalized LMS filter). The white noise is input + * to the adaptive filter. The adaptive filter learns the transfer function of the FIR filter. + * The filter outputs two signals: (1) the output of the internal adaptive FIR filter, and + * (2) the error signal which is the difference between the adaptive filter and the reference + * output of the FIR filter. Over time as the adaptive filter learns the transfer function + * of the FIR filter, the first output approaches the reference output of the FIR filter, + * and the error signal approaches zero. + * \par + * The adaptive filter converges properly even if the input signal has a large dynamic + * range (i.e., varies from small to large values). The coefficients of the adaptive filter + * are initially zero, and then converge over 1536 samples. The internal function test_signal_converge() + * implements the stopping condition. The function checks if all of the values of the error signal have a + * magnitude below a threshold DELTA. + * + * \par Block Diagram: + * \par + * \image html SignalFlow.gif + * + * + * \par Variables Description: + * \par + * \li \c testInput_f32 points to the input data + * \li \c firStateF32 points to FIR state buffer + * \li \c lmsStateF32 points to Normalised Least mean square FIR filter state buffer + * \li \c FIRCoeff_f32 points to coefficient buffer + * \li \c lmsNormCoeff_f32 points to Normalised Least mean square FIR filter coefficient buffer + * \li \c wire1, wir2, wire3 temporary buffers + * \li \c errOutput, err_signal temporary error buffers + * + * \par CMSIS DSP Software Library Functions Used: + * \par + * - arm_lms_norm_init_f32() + * - arm_fir_init_f32() + * - arm_fir_f32() + * - arm_lms_norm_f32() + * - arm_scale_f32() + * - arm_abs_f32() + * - arm_sub_f32() + * - arm_min_f32() + * - arm_copy_f32() + * + * Refer + * \link arm_signal_converge_example_f32.c \endlink + * + */ + + +/** \example arm_signal_converge_example_f32.c + */ + +#include "arm_math.h" +#include "math_helper.h" + +/* ---------------------------------------------------------------------- +** Global defines for the simulation +* ------------------------------------------------------------------- */ + +#define TEST_LENGTH_SAMPLES 1536 +#define NUMTAPS 32 +#define BLOCKSIZE 32 +#define DELTA_ERROR 0.000001f +#define DELTA_COEFF 0.0001f +#define MU 0.5f + +#define NUMFRAMES (TEST_LENGTH_SAMPLES / BLOCKSIZE) + +/* ---------------------------------------------------------------------- +* Declare FIR state buffers and structure +* ------------------------------------------------------------------- */ + +float32_t firStateF32[NUMTAPS + BLOCKSIZE]; +arm_fir_instance_f32 LPF_instance; + +/* ---------------------------------------------------------------------- +* Declare LMSNorm state buffers and structure +* ------------------------------------------------------------------- */ + +float32_t lmsStateF32[NUMTAPS + BLOCKSIZE]; +float32_t errOutput[TEST_LENGTH_SAMPLES]; +arm_lms_norm_instance_f32 lmsNorm_instance; + + +/* ---------------------------------------------------------------------- +* Function Declarations for Signal Convergence Example +* ------------------------------------------------------------------- */ + +arm_status test_signal_converge_example( void ); + + +/* ---------------------------------------------------------------------- +* Internal functions +* ------------------------------------------------------------------- */ +arm_status test_signal_converge(float32_t* err_signal, + uint32_t blockSize); + +void getinput(float32_t* input, + uint32_t fr_cnt, + uint32_t blockSize); + +/* ---------------------------------------------------------------------- +* External Declarations for FIR F32 module Test +* ------------------------------------------------------------------- */ +extern float32_t testInput_f32[TEST_LENGTH_SAMPLES]; +extern float32_t lmsNormCoeff_f32[32]; +extern const float32_t FIRCoeff_f32[32]; +extern arm_lms_norm_instance_f32 lmsNorm_instance; + +/* ---------------------------------------------------------------------- +* Declare I/O buffers +* ------------------------------------------------------------------- */ + +float32_t wire1[BLOCKSIZE]; +float32_t wire2[BLOCKSIZE]; +float32_t wire3[BLOCKSIZE]; +float32_t err_signal[BLOCKSIZE]; + +/* ---------------------------------------------------------------------- +* Signal converge test +* ------------------------------------------------------------------- */ + +int32_t main(void) +{ + uint32_t i; + arm_status status; + uint32_t index; + float32_t minValue; + + /* Initialize the LMSNorm data structure */ + arm_lms_norm_init_f32(&lmsNorm_instance, NUMTAPS, lmsNormCoeff_f32, lmsStateF32, MU, BLOCKSIZE); + + /* Initialize the FIR data structure */ + arm_fir_init_f32(&LPF_instance, NUMTAPS, (float32_t *)FIRCoeff_f32, firStateF32, BLOCKSIZE); + + /* ---------------------------------------------------------------------- + * Loop over the frames of data and execute each of the processing + * functions in the system. + * ------------------------------------------------------------------- */ + + for(i=0; i < NUMFRAMES; i++) + { + /* Read the input data - uniformly distributed random noise - into wire1 */ + arm_copy_f32(testInput_f32 + (i * BLOCKSIZE), wire1, BLOCKSIZE); + + /* Execute the FIR processing function. Input wire1 and output wire2 */ + arm_fir_f32(&LPF_instance, wire1, wire2, BLOCKSIZE); + + /* Execute the LMS Norm processing function*/ + + arm_lms_norm_f32(&lmsNorm_instance, /* LMSNorm instance */ + wire1, /* Input signal */ + wire2, /* Reference Signal */ + wire3, /* Converged Signal */ + err_signal, /* Error Signal, this will become small as the signal converges */ + BLOCKSIZE); /* BlockSize */ + + /* apply overall gain */ + arm_scale_f32(wire3, 5, wire3, BLOCKSIZE); /* in-place buffer */ + } + + status = ARM_MATH_SUCCESS; + + /* ------------------------------------------------------------------------------- + * Test whether the error signal has reached towards 0. + * ----------------------------------------------------------------------------- */ + + arm_abs_f32(err_signal, err_signal, BLOCKSIZE); + arm_min_f32(err_signal, BLOCKSIZE, &minValue, &index); + + if (minValue > DELTA_ERROR) + { + status = ARM_MATH_TEST_FAILURE; + } + + /* ---------------------------------------------------------------------- + * Test whether the filter coefficients have converged. + * ------------------------------------------------------------------- */ + + arm_sub_f32((float32_t *)FIRCoeff_f32, lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS); + + arm_abs_f32(lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS); + arm_min_f32(lmsNormCoeff_f32, NUMTAPS, &minValue, &index); + + if (minValue > DELTA_COEFF) + { + status = ARM_MATH_TEST_FAILURE; + } + + /* ---------------------------------------------------------------------- + * Loop here if the signals did not pass the convergence check. + * This denotes a test failure + * ------------------------------------------------------------------- */ + + if ( status != ARM_MATH_SUCCESS) + { + while (1); + } + + while (1); /* main function does not return */ +} + + /** \endlink */ -- cgit