From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001
From: jaseg <git@jaseg.net>
Date: Wed, 14 Oct 2020 12:47:28 +0200
Subject: Move firmware into subdirectory

---
 .../arm_convolve_1x1_HWC_q7_fast_nonsquare.c       | 235 ++++++++++++
 .../arm_convolve_HWC_q15_basic.c                   | 207 ++++++++++
 .../arm_convolve_HWC_q15_fast.c                    | 255 +++++++++++++
 .../arm_convolve_HWC_q15_fast_nonsquare.c          | 265 +++++++++++++
 .../ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c | 279 ++++++++++++++
 .../arm_convolve_HWC_q7_basic.c                    | 230 ++++++++++++
 .../arm_convolve_HWC_q7_basic_nonsquare.c          | 228 +++++++++++
 .../arm_convolve_HWC_q7_fast.c                     | 408 ++++++++++++++++++++
 .../arm_convolve_HWC_q7_fast_nonsquare.c           | 379 +++++++++++++++++++
 .../arm_depthwise_separable_conv_HWC_q7.c          | 418 +++++++++++++++++++++
 ...arm_depthwise_separable_conv_HWC_q7_nonsquare.c | 411 ++++++++++++++++++++
 .../arm_nn_mat_mult_kernel_q7_q15.c                | 187 +++++++++
 .../arm_nn_mat_mult_kernel_q7_q15_reordered.c      | 138 +++++++
 13 files changed, 3640 insertions(+)
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c
 create mode 100644 fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c

(limited to 'fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions')

diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c
new file mode 100644
index 0000000..4c69e7c
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c
@@ -0,0 +1,235 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_1x1_HWC_q7_fast_nonsquare.c
+ * Description:  Fast Q7 version of 1x1 convolution (non-square shape)
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+ * @param[in]       Im_in        pointer to input tensor
+ * @param[in]       dim_im_in_x  input tensor dimention x
+ * @param[in]       dim_im_in_y  input tensor dimention y
+ * @param[in]       ch_im_in     number of input tensor channels
+ * @param[in]       wt           pointer to kernel weights
+ * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+ * @param[in]       dim_kernel_x filter kernel size x
+ * @param[in]       dim_kernel_y filter kernel size y
+ * @param[in]       padding_x    padding size x
+ * @param[in]       padding_y    padding size y
+ * @param[in]       stride_x     convolution stride x
+ * @param[in]       stride_y     convolution stride y
+ * @param[in]       bias         pointer to bias
+ * @param[in]       bias_shift   amount of left-shift for bias
+ * @param[in]       out_shift    amount of right-shift for output
+ * @param[in,out]   Im_out       pointer to output tensor
+ * @param[in]       dim_im_out_x output tensor dimension x
+ * @param[in]       dim_im_out_y output tensor dimension y
+ * @param[in,out]   bufferA      pointer to buffer space for input 
+ * @param[in,out]   bufferB      pointer to buffer space for output
+ * @return     The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+ * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise 
+ * separable convolution.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ *   ch_im_in is multiple of 4
+ *   ch_im_out is multiple of 2
+ *
+ * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
+ * https://arxiv.org/abs/1704.04861
+ */
+
+arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+                                                  const uint16_t dim_im_in_x,
+                                                  const uint16_t dim_im_in_y,
+                                                  const uint16_t ch_im_in,
+                                                  const q7_t * wt,
+                                                  const uint16_t ch_im_out,
+                                                  const uint16_t dim_kernel_x,
+                                                  const uint16_t dim_kernel_y,
+                                                  const uint16_t padding_x,
+                                                  const uint16_t padding_y,
+                                                  const uint16_t stride_x,
+                                                  const uint16_t stride_y,
+                                                  const q7_t * bias,
+                                                  const uint16_t bias_shift,
+                                                  const uint16_t out_shift,
+                                                  q7_t * Im_out,
+                                                  const uint16_t dim_im_out_x,
+                                                  const uint16_t dim_im_out_y, 
+                                                  q15_t * bufferA, 
+                                                  q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x;
+    int16_t   i_ch_out;
+
+    /* -----------------------
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
+        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
+                                             ch_im_in);
+            pBuffer += ch_im_in;
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* check if there is left-over for compute */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+        {
+            q31_t     sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+            q15_t    *pB = bufferA;
+            /* basically each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
+
+            while (colCnt)
+            {
+
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+            pOut++;
+
+        }
+
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+		
+    int       i, j, k, l, m, n;
+    int       conv_out;
+    int       in_row, in_col;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
+        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        // if-for implementation
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c
new file mode 100644
index 0000000..ee08d74
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c
@@ -0,0 +1,207 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q15_basic.c
+ * Description:  Q15 version of convolution
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Basic Q15 convolution function
+   * @param[in]       Im_in       pointer to input tensor
+   * @param[in]       dim_im_in   input tensor dimention
+   * @param[in]       ch_im_in    number of input tensor channels
+   * @param[in]       wt          pointer to kernel weights
+   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel  filter kernel size
+   * @param[in]       padding     padding sizes
+   * @param[in]       stride      convolution stride
+   * @param[in]       bias        pointer to bias
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in,out]   Im_out      pointer to output tensor
+   * @param[in]       dim_im_out  output tensor dimension
+   * @param[in,out]   bufferA     pointer to buffer space for input
+   * @param[in,out]   bufferB     pointer to buffer space for output
+   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * This basic version is designed to work for any input tensor and weight
+   * dimension. 
+   */
+
+arm_status
+arm_convolve_HWC_q15_basic(const q15_t * Im_in,
+                           const uint16_t dim_im_in,
+                           const uint16_t ch_im_in,
+                           const q15_t * wt,
+                           const uint16_t ch_im_out,
+                           const uint16_t dim_kernel,
+                           const uint16_t padding,
+                           const uint16_t stride,
+                           const q15_t * bias,
+                           const uint16_t bias_shift,
+                           const uint16_t out_shift,
+                           q15_t * Im_out, 
+                           const uint16_t dim_im_out, 
+                           q15_t * bufferA, 
+                           q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    uint16_t  im2col_out_pixel_index = 0;
+    q15_t    *pBuffer = bufferA;
+    q15_t    *pOut = Im_out;
+    q15_t    *im_buffer = bufferA;
+    const q15_t *pA;
+    int       i;
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* Filling 0 for out-of-bound paddings */
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            pA = wt;
+            for (i = 0; i < ch_im_out; i++)
+            {
+                q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                q15_t    *pB = im_buffer;
+                uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+                while (colCnt)
+                {
+                    q31_t     inA1 = *__SIMD32(pA)++;
+                    q31_t     inB1 = *__SIMD32(pB)++;
+                    q31_t     inA2 = *__SIMD32(pA)++;
+                    q31_t     inB2 = *__SIMD32(pB)++;
+
+                    sum = __SMLAD(inA1, inB1, sum);
+                    sum = __SMLAD(inA2, inB2, sum);
+
+                    colCnt--;
+                }
+                colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+                while (colCnt)
+                {
+                    q15_t     inA1 = *pA++;
+                    q15_t     inB1 = *pB++;
+                    sum += inA1 * inB1;
+                    colCnt--;
+                }
+                *pOut = (q15_t) __SSAT((sum >> out_shift), 16);
+                pOut++;
+            }
+
+            /* counter reset */
+            pBuffer = im_buffer;
+            im2col_out_pixel_index++;
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out; j++)
+        {
+            for (k = 0; k < dim_im_out; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel; m++)
+                {
+                    for (n = 0; n < dim_kernel; n++)
+                    {
+                        in_row = stride * j + m - padding;
+                        in_col = stride * k + n - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c
new file mode 100644
index 0000000..a02aaa0
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c
@@ -0,0 +1,255 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q15_fast.c
+ * Description:  Fast Q15 version of convolution
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Fast Q15 convolution function
+   * @param[in]       Im_in       pointer to input tensor
+   * @param[in]       dim_im_in   input tensor dimention
+   * @param[in]       ch_im_in    number of input tensor channels
+   * @param[in]       wt          pointer to kernel weights
+   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel  filter kernel size
+   * @param[in]       padding     padding sizes
+   * @param[in]       stride      convolution stride
+   * @param[in]       bias        pointer to bias
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in,out]   Im_out      pointer to output tensor
+   * @param[in]       dim_im_out  output tensor dimension
+   * @param[in,out]   bufferA     pointer to buffer space for input 
+   * @param[in,out]   bufferB     pointer to buffer space for output
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * <b>Input dimension constraints:</b>
+   *
+   * ch_im_in is multiple of 2 
+   *
+   * ch_im_out is multipe of 2
+   *
+   */
+
+arm_status
+arm_convolve_HWC_q15_fast(const q15_t * Im_in,
+                          const uint16_t dim_im_in,
+                          const uint16_t ch_im_in,
+                          const q15_t * wt,
+                          const uint16_t ch_im_out,
+                          const uint16_t dim_kernel,
+                          const uint16_t padding,
+                          const uint16_t stride,
+                          const q15_t * bias,
+                          const uint16_t bias_shift,
+                          const uint16_t out_shift,
+                          q15_t * Im_out, 
+                          const uint16_t dim_im_out, 
+                          q15_t * bufferA, 
+                          q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    q15_t    *pBuffer = bufferA;
+    q15_t    *im_buffer = bufferA;
+    q15_t    *pOut = Im_out;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (i_out_x & 0x1)
+            {
+                int       i;
+                /* initialize the matrix pointers for A */
+                const q15_t *pA = wt;
+
+                /* set up the second output pointers */
+                q15_t    *pOut2 = pOut + ch_im_out;
+
+                /* this loop over rows in A */
+                for (i = 0; i < ch_im_out; i += 2)
+                {
+                    /* setup pointers for B */
+                    q15_t    *pB = im_buffer;
+                    const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
+
+                    /* aling the second pointer for A */
+                    const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
+
+                    /* init the sum with bias */
+                    q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+
+                    uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
+                    /* accumulate over the vector */
+                    while (colCnt)
+                    {
+                        q31_t     inA1 = *__SIMD32(pA)++;
+                        q31_t     inB1 = *__SIMD32(pB)++;
+                        q31_t     inA2 = *__SIMD32(pA2)++;
+                        q31_t     inB2 = *__SIMD32(pB2)++;
+
+                        sum = __SMLAD(inA1, inB1, sum);
+                        sum2 = __SMLAD(inA1, inB2, sum2);
+                        sum3 = __SMLAD(inA2, inB1, sum3);
+                        sum4 = __SMLAD(inA2, inB2, sum4);
+
+                        colCnt--;
+                    }           /* while over colCnt */
+                    colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
+                    while (colCnt)
+                    {
+                        q15_t     inA1 = *pA++;
+                        q15_t     inB1 = *pB++;
+                        q15_t     inA2 = *pA2++;
+                        q15_t     inB2 = *pB2++;
+
+                        sum += inA1 * inB1;
+                        sum2 += inA1 * inB2;
+                        sum3 += inA2 * inB1;
+                        sum4 += inA2 * inB2;
+                        colCnt--;
+                    }           /* while over colCnt */
+                    *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
+                    *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
+
+                    /* skip the row computed with A2 */
+                    pA += ch_im_in * dim_kernel * dim_kernel;
+                }               /* for over ch_im_out */
+
+                pOut += ch_im_out;
+                /* counter reset */
+                pBuffer = im_buffer;
+            }
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out; j++)
+        {
+            for (k = 0; k < dim_im_out; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel; m++)
+                {
+                    for (n = 0; n < dim_kernel; n++)
+                    {
+                        in_row = stride * j + m - padding;
+                        in_col = stride * k + n - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
new file mode 100644
index 0000000..14d9130
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
@@ -0,0 +1,265 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q15_fast.c
+ * Description:  Fast Q15 version of convolution
+ *
+ * $Date:        24. May 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Fast Q15 convolution function (non-sqaure shape)
+   * @param[in]       Im_in        pointer to input tensor
+   * @param[in]       dim_im_in_x  input tensor dimention x
+   * @param[in]       dim_im_in_y  input tensor dimention y
+   * @param[in]       ch_im_in     number of input tensor channels
+   * @param[in]       wt           pointer to kernel weights
+   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel_x filter kernel size x
+   * @param[in]       dim_kernel_y filter kernel size y
+   * @param[in]       padding_x    padding size x
+   * @param[in]       padding_y    padding size y
+   * @param[in]       stride_x     convolution stride x
+   * @param[in]       stride_y     convolution stride y
+   * @param[in]       bias         pointer to bias
+   * @param[in]       bias_shift   amount of left-shift for bias
+   * @param[in]       out_shift    amount of right-shift for output
+   * @param[in,out]   Im_out       pointer to output tensor
+   * @param[in]       dim_im_out_x output tensor dimension x
+   * @param[in]       dim_im_out_y output tensor dimension y
+   * @param[in,out]   bufferA      pointer to buffer space for input 
+   * @param[in,out]   bufferB      pointer to buffer space for output
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * <b>Input dimension constraints:</b>
+   *
+   * ch_im_in is multiple of 2 
+   *
+   * ch_im_out is multipe of 2
+   *
+   */
+
+arm_status
+arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
+                                    const uint16_t dim_im_in_x,
+                                    const uint16_t dim_im_in_y,
+                                    const uint16_t ch_im_in,
+                                    const q15_t * wt,
+                                    const uint16_t ch_im_out,
+                                    const uint16_t dim_kernel_x,
+                                    const uint16_t dim_kernel_y,
+                                    const uint16_t padding_x,
+                                    const uint16_t padding_y,
+                                    const uint16_t stride_x,
+                                    const uint16_t stride_y,
+                                    const q15_t * bias,
+                                    const uint16_t bias_shift,
+                                    const uint16_t out_shift,
+                                    q15_t * Im_out,
+                                    const uint16_t dim_im_out_x,
+                                    const uint16_t dim_im_out_y, 
+                                    q15_t * bufferA, 
+                                    q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    q15_t    *pBuffer = bufferA;
+    q15_t    *im_buffer = bufferA;
+    q15_t    *pOut = Im_out;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (i_out_x & 0x1)
+            {
+                int       i;
+                /* initialize the matrix pointers for A */
+                const q15_t *pA = wt;
+
+                /* set up the second output pointers */
+                q15_t    *pOut2 = pOut + ch_im_out;
+
+                /* this loop over rows in A */
+                for (i = 0; i < ch_im_out; i += 2)
+                {
+                    /* setup pointers for B */
+                    q15_t    *pB = im_buffer;
+                    const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+                    /* aling the second pointer for A */
+                    const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+                    /* init the sum with bias */
+                    q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+
+                    uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
+                    /* accumulate over the vector */
+                    while (colCnt)
+                    {
+                        q31_t     inA1 = *__SIMD32(pA)++;
+                        q31_t     inB1 = *__SIMD32(pB)++;
+                        q31_t     inA2 = *__SIMD32(pA2)++;
+                        q31_t     inB2 = *__SIMD32(pB2)++;
+
+                        sum = __SMLAD(inA1, inB1, sum);
+                        sum2 = __SMLAD(inA1, inB2, sum2);
+                        sum3 = __SMLAD(inA2, inB1, sum3);
+                        sum4 = __SMLAD(inA2, inB2, sum4);
+
+                        colCnt--;
+                    }           /* while over colCnt */
+                    colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
+                    while (colCnt)
+                    {
+                        q15_t     inA1 = *pA++;
+                        q15_t     inB1 = *pB++;
+                        q15_t     inA2 = *pA2++;
+                        q15_t     inB2 = *pB2++;
+
+                        sum += inA1 * inB1;
+                        sum2 += inA1 * inB2;
+                        sum3 += inA2 * inB1;
+                        sum4 += inA2 * inB2;
+                        colCnt--;
+                    }           /* while over colCnt */
+                    *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
+                    *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
+
+                    /* skip the row computed with A2 */
+                    pA += ch_im_in * dim_kernel_y * dim_kernel_x;
+                }               /* for over ch_im_out */
+
+                pOut += ch_im_out;
+                /* counter reset */
+                pBuffer = im_buffer;
+            }
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
new file mode 100644
index 0000000..e53c6f9
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
@@ -0,0 +1,279 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_RGB.c
+ * Description:  Q7 version of convolution for RGB image
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Q7 convolution function for RGB image
+   * @param[in]       Im_in       pointer to input tensor
+   * @param[in]       dim_im_in   input tensor dimention
+   * @param[in]       ch_im_in    number of input tensor channels
+   * @param[in]       wt          pointer to kernel weights
+   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel  filter kernel size
+   * @param[in]       padding     padding sizes
+   * @param[in]       stride      convolution stride
+   * @param[in]       bias        pointer to bias
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in,out]   Im_out      pointer to output tensor
+   * @param[in]       dim_im_out  output tensor dimension
+   * @param[in,out]   bufferA     pointer to buffer space for input
+   * @param[in,out]   bufferB     pointer to buffer space for output
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * <b>Input dimension constraints:</b>
+   *
+   * ch_im_in equals 3
+   *
+   * This kernel is written exclusively for convolution with ch_im_in
+   * equals 3. This applies on the first layer of CNNs which has input
+   * image with RGB format.
+   */
+
+arm_status
+arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
+                        const uint16_t dim_im_in,
+                        const uint16_t ch_im_in,
+                        const q7_t * wt,
+                        const uint16_t ch_im_out,
+                        const uint16_t dim_kernel,
+                        const uint16_t padding,
+                        const uint16_t stride,
+                        const q7_t * bias,
+                        const uint16_t bias_shift,
+                        const uint16_t out_shift,
+                        q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /*
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    // check if number of input channels is 3
+    if (ch_im_in != 3)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+    // This part implements the im2col function
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
+                        *__SIMD32(pBuffer) = 0x0;
+                        *(pBuffer + 2) = 0;
+                        pBuffer += 3;
+                    } else
+                    {
+                        /* 
+                         * Equivalent to:
+                         *  arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
+                         */
+
+                        const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
+                        q31_t     buf = *__SIMD32(pPixel);
+
+                        union arm_nnword top;
+                        union arm_nnword bottom;
+
+                        top.word = __SXTB16(buf);
+                        bottom.word = __SXTB16(__ROR(buf, 8));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+                        /*
+                         *  little-endian, | omit | 3rd  | 2nd  | 1st  |
+                         *                MSB                         LSB
+                         *   top | 3rd | 1st |; bottom | omit | 2nd |
+                         *
+                         *  version 1, need to swap 2nd and 3rd weight
+                         * *__SIMD32(pBuffer) = top.word;
+                         * *(pBuffer+2) = bottom.half_words[0];
+                         *
+                         *  version 2, no weight shuffling required
+                         */
+                        *pBuffer++ = top.half_words[0];
+                        *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0);
+#else
+                        /*
+                         *  big-endian,    | 1st  | 2nd  | 3rd  | omit | 
+                         *                MSB                         LSB
+                         *  top | 2nd | omit |; bottom | 1st | 3rd |
+                         * 
+                         *  version 1, need to swap 2nd and 3rd weight
+                         * *__SIMD32(pBuffer) = bottom.word;
+                         * *(pBuffer+2) = top.half_words[1];
+                         * 
+                         *  version 2, no weight shuffling required
+                         */
+                        *pBuffer++ = bottom.half_words[0];
+                        *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0);
+#endif
+                        pBuffer += 2;
+                    }
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+                                                  ch_im_out,
+                                                  3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* left-over because odd number of output pixels */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+
+        for (i = 0; i < ch_im_out; i++)
+        {
+            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+            q15_t    *pB = bufferA;
+            /* basically each time it process 4 entries */
+            uint16_t  colCnt = 3 * dim_kernel * dim_kernel >> 2;
+
+            while (colCnt)
+            {
+
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = 3 * dim_kernel * dim_kernel & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        }
+    }
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    // check if number of input channels is 3
+    if (ch_im_in != 3)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out; j++)
+        {
+            for (k = 0; k < dim_im_out; k++)
+            {
+                conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel; m++)
+                {
+                    for (n = 0; n < dim_kernel; n++)
+                    {
+                        /* if-for implementation */
+                        in_row = stride * j + m - padding;
+                        in_col = stride * k + n - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return (ARM_MATH_SUCCESS);
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c
new file mode 100644
index 0000000..7c9ec65
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c
@@ -0,0 +1,230 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_basic.c
+ * Description:	 Q7 version of convolution
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Basic Q7 convolution function
+   * @param[in]       Im_in       pointer to input tensor
+   * @param[in]       dim_im_in   input tensor dimention
+   * @param[in]       ch_im_in    number of input tensor channels
+   * @param[in]       wt          pointer to kernel weights
+   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel  filter kernel size
+   * @param[in]       padding     padding sizes
+   * @param[in]       stride      convolution stride
+   * @param[in]       bias        pointer to bias
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in,out]   Im_out      pointer to output tensor
+   * @param[in]       dim_im_out  output tensor dimension
+   * @param[in,out]   bufferA     pointer to buffer space for input 
+   * @param[in,out]   bufferB     pointer to buffer space for output
+   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * This basic version is designed to work for any input tensor and weight
+   * dimension. 
+   */
+
+arm_status
+arm_convolve_HWC_q7_basic(const q7_t * Im_in,
+                          const uint16_t dim_im_in,
+                          const uint16_t ch_im_in,
+                          const q7_t * wt,
+                          const uint16_t ch_im_out,
+                          const uint16_t dim_kernel,
+                          const uint16_t padding,
+                          const uint16_t stride,
+                          const q7_t * bias,
+                          const uint16_t bias_shift,
+                          const uint16_t out_shift,
+                          q7_t * Im_out, 
+                          const uint16_t dim_im_out, 
+                          q15_t * bufferA, 
+                          q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /* 
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* Filling 0 for out-of-bound paddings */
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* Copying the pixel data to column */
+                        arm_q7_to_q15_no_shift((q7_t *)
+                                               Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            /* Computation is filed for every 2 columns */
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+                                                  ch_im_out,
+                                                  ch_im_in *
+                                                  dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* left-over because odd number of output pixels */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+
+        for (i = 0; i < ch_im_out; i++)
+        {
+            /* Load the accumulator with bias first */
+            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+
+            /* Point to the beging of the im2col buffer */
+            q15_t    *pB = bufferA;
+
+            /* Each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+
+            while (colCnt)
+            {
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        }
+    }
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out; j++)
+        {
+            for (k = 0; k < dim_im_out; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel; m++)
+                {
+                    for (n = 0; n < dim_kernel; n++)
+                    {
+                        // if-for implementation
+                        in_row = stride * j + m - padding;
+                        in_col = stride * k + n - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c
new file mode 100644
index 0000000..24356d9
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c
@@ -0,0 +1,228 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_basic.c
+ * Description:	 Q7 version of convolution
+ *
+ * $Date:        13. July 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Basic Q7 convolution function (non-sqaure shape)
+   * @param[in]       Im_in        pointer to input tensor
+   * @param[in]       dim_im_in_x  input tensor dimention x
+   * @param[in]       dim_im_in_y  input tensor dimention y
+   * @param[in]       ch_im_in     number of input tensor channels
+   * @param[in]       wt           pointer to kernel weights
+   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel_x filter kernel size x
+   * @param[in]       dim_kernel_y filter kernel size y
+   * @param[in]       padding_x    padding size x
+   * @param[in]       padding_y    padding size y
+   * @param[in]       stride_x     convolution stride x
+   * @param[in]       stride_y     convolution stride y
+   * @param[in]       bias         pointer to bias
+   * @param[in]       bias_shift   amount of left-shift for bias
+   * @param[in]       out_shift    amount of right-shift for output
+   * @param[in,out]   Im_out       pointer to output tensor
+   * @param[in]       dim_im_out_x output tensor dimension x
+   * @param[in]       dim_im_out_y output tensor dimension y
+   * @param[in,out]   bufferA      pointer to buffer space for input
+   * @param[in,out]   bufferB      pointer to buffer space for output
+   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+   */
+
+arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
+                                               const uint16_t dim_im_in_x,
+                                               const uint16_t dim_im_in_y,
+                                               const uint16_t ch_im_in,
+                                               const q7_t * wt,
+                                               const uint16_t ch_im_out,
+                                               const uint16_t dim_kernel_x,
+                                               const uint16_t dim_kernel_y,
+                                               const uint16_t padding_x,
+                                               const uint16_t padding_y,
+                                               const uint16_t stride_x,
+                                               const uint16_t stride_y,
+                                               const q7_t * bias,
+                                               const uint16_t bias_shift,
+                                               const uint16_t out_shift,
+                                               q7_t * Im_out,
+                                               const uint16_t dim_im_out_x,
+                                               const uint16_t dim_im_out_y,
+                                               q15_t * bufferA,
+                                               q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /* 
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* Filling 0 for out-of-bound paddings */
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* Copying the pixel data to column */
+                        arm_q7_to_q15_no_shift((q7_t *)
+                                               Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            /* Computation is filed for every 2 columns */
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+                                                  ch_im_out,
+                                                  ch_im_in *
+                                                  dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);
+
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* left-over because odd number of output pixels */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+
+        for (i = 0; i < ch_im_out; i++)
+        {
+            /* Load the accumulator with bias first */
+            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+
+            /* Point to the beging of the im2col buffer */
+            q15_t    *pB = bufferA;
+
+            /* Each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;
+
+            while (colCnt)
+            {
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        }
+    }
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        // if-for implementation
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * 
+                                         wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + 
+                                         (m * dim_kernel_x + n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
new file mode 100644
index 0000000..e2d469f
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
@@ -0,0 +1,408 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_fast.c
+ * Description:  Fast Q7 version of convolution
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Fast Q7 convolution function
+   * @param[in]       Im_in       pointer to input tensor
+   * @param[in]       dim_im_in   input tensor dimention
+   * @param[in]       ch_im_in    number of input tensor channels
+   * @param[in]       wt          pointer to kernel weights
+   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel  filter kernel size
+   * @param[in]       padding     padding sizes
+   * @param[in]       stride      convolution stride
+   * @param[in]       bias        pointer to bias
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in,out]   Im_out      pointer to output tensor
+   * @param[in]       dim_im_out  output tensor dimension
+   * @param[in,out]   bufferA     pointer to buffer space for input 
+   * @param[in,out]   bufferB     pointer to buffer space for output
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * <b>Input dimension constraints:</b>
+   *
+   * ch_im_in is multiple of 4    ( because of the SIMD32 read and swap )
+   *
+   * ch_im_out is multipe of 2    ( bacause 2x2 mat_mult kernel )
+   *
+   * The im2col converts the Q7 tensor input into Q15 column, which is stored in
+   * bufferA. There is reordering happenning during this im2col process with
+   * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
+   * third elements are swapped. 
+   *
+   * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
+   * GEMM computation with the reordered columns.
+   *
+   * To speed-up the determination of the padding condition, we split the
+   * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
+   * This reduces the total number of boundary condition checks and improves
+   * the data copying performance.
+   */
+
+arm_status
+arm_convolve_HWC_q7_fast(const q7_t * Im_in,
+                         const uint16_t dim_im_in,
+                         const uint16_t ch_im_in,
+                         const q7_t * wt,
+                         const uint16_t ch_im_out,
+                         const uint16_t dim_kernel,
+                         const uint16_t padding,
+                         const uint16_t stride,
+                         const q7_t * bias,
+                         const uint16_t bias_shift,
+                         const uint16_t out_shift,
+                         q7_t * Im_out, 
+                         const uint16_t dim_im_out, 
+                         q15_t * bufferA, 
+                         q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /*
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /*
+     *  Here we split the entire matrix into three regions depending on the padding situation
+     *    Top: i_out_y from 0 to padding - 1
+     * Middle: i_out_y from padding to dim_im_out-padding-1
+     * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
+     */
+
+    /* top part */
+    for (i_out_y = 0; i_out_y < padding; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift
+                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+                                                            bufferA,
+                                                            ch_im_out,
+                                                            ch_im_in
+                                                            *
+                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* middle part, here we also divide the x into left, mid and right */
+    for (; i_out_y < dim_im_out - padding; i_out_y++)
+    {
+
+        /* left part */
+        for (i_out_x = 0; i_out_x < padding; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift
+                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+                                                            bufferA,
+                                                            ch_im_out,
+                                                            ch_im_in
+                                                            *
+                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* mid part */
+        for (; i_out_x < dim_im_out - padding; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
+                                                 +
+                                                 (i_ker_y *
+                                                  dim_im_in +
+                                                  i_out_x *
+                                                  stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
+                pBuffer += ch_im_in * dim_kernel;
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+                                                            bufferA,
+                                                            ch_im_out,
+                                                            ch_im_in
+                                                            *
+                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* right part */
+        for (; i_out_x < dim_im_out; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift
+                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+                                                            bufferA,
+                                                            ch_im_out,
+                                                            ch_im_in
+                                                            *
+                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    for (; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift
+                            ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+                                                            bufferA,
+                                                            ch_im_out,
+                                                            ch_im_in
+                                                            *
+                                                            dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* check if there is left-over for compute */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+
+        for (i = 0; i < ch_im_out; i++)
+        {
+            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+            q15_t    *pB = bufferA;
+            /* each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+
+            while (colCnt)
+            {
+
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+            pOut++;
+
+        }
+
+    }
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out; j++)
+        {
+            for (k = 0; k < dim_im_out; k++)
+            {
+                conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel; m++)
+                {
+                    for (n = 0; n < dim_kernel; n++)
+                    {
+                        // if-for implementation
+                        in_row = stride * j + m - padding;
+                        in_col = stride * k + n - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
new file mode 100644
index 0000000..6dc6f0b
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
@@ -0,0 +1,379 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_fast_nonsquare.c
+ * Description:  Fast Q7 version of convolution (non-sqaure shape)
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in]       Im_in        pointer to input tensor
+ * @param[in]       dim_im_in_x  input tensor dimention x
+ * @param[in]       dim_im_in_y  input tensor dimention y
+ * @param[in]       ch_im_in     number of input tensor channels
+ * @param[in]       wt           pointer to kernel weights
+ * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+ * @param[in]       dim_kernel_x filter kernel size x
+ * @param[in]       dim_kernel_y filter kernel size y
+ * @param[in]       padding_x    padding size x
+ * @param[in]       padding_y    padding size y
+ * @param[in]       stride_x     convolution stride x
+ * @param[in]       stride_y     convolution stride y
+ * @param[in]       bias         pointer to bias
+ * @param[in]       bias_shift   amount of left-shift for bias
+ * @param[in]       out_shift    amount of right-shift for output
+ * @param[in,out]   Im_out       pointer to output tensor
+ * @param[in]       dim_im_out_x output tensor dimension x
+ * @param[in]       dim_im_out_y output tensor dimension y
+ * @param[in,out]   bufferA      pointer to buffer space for input 
+ * @param[in,out]   bufferB      pointer to buffer space for output
+ * @return     The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ *   ch_im_in is multiple of 4
+ *   ch_im_out is multiple of 2
+ */
+
+arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+                                              const uint16_t dim_im_in_x,
+                                              const uint16_t dim_im_in_y,
+                                              const uint16_t ch_im_in,
+                                              const q7_t * wt,
+                                              const uint16_t ch_im_out,
+                                              const uint16_t dim_kernel_x,
+                                              const uint16_t dim_kernel_y,
+                                              const uint16_t padding_x,
+                                              const uint16_t padding_y,
+                                              const uint16_t stride_x,
+                                              const uint16_t stride_y,
+                                              const q7_t * bias,
+                                              const uint16_t bias_shift,
+                                              const uint16_t out_shift,
+                                              q7_t * Im_out,
+                                              const uint16_t dim_im_out_x,
+                                              const uint16_t dim_im_out_y, 
+                                              q15_t * bufferA, 
+                                              q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /* -----------------------
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /*
+     *  Here we split the entire matrix into three regions depending on the padding situation
+     *    Top: i_out_y from 0 to padding - 1
+     * Middle: i_out_y from padding to dim_im_out-padding-1
+     * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
+     */
+
+    /* top part */
+    for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* middle part, here we also divide the x into left, mid and right */
+    for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
+    {
+
+        /* left part */
+        for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* mid part */
+        for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +
+                                                 (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
+                                                 pBuffer, ch_im_in * dim_kernel_x);
+                pBuffer += ch_im_in * dim_kernel_x;
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* right part */
+        for (; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    for (; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* check if there is left-over for compute */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+        for (i = 0; i < ch_im_out; i++)
+        {
+            q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+            q15_t    *pB = bufferA;
+            /* basically each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
+
+            while (colCnt)
+            {
+
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+            pOut++;
+
+        }
+
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    int       i, j, k, l, m, n;
+    int       conv_out;
+    int       in_row, in_col;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        /* if-for implementation */
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];      
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c
new file mode 100644
index 0000000..705fa6a
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c
@@ -0,0 +1,418 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_depthwise_separable_conv_HWC_q7.c
+ * Description:  Q7 depthwise separable convolution function
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Q7 depthwise separable convolution function
+ * @param[in]       Im_in       pointer to input tensor
+ * @param[in]       dim_im_in   input tensor dimention
+ * @param[in]       ch_im_in    number of input tensor channels
+ * @param[in]       wt          pointer to kernel weights
+ * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+ * @param[in]       dim_kernel  filter kernel size
+ * @param[in]       padding     padding sizes
+ * @param[in]       stride      convolution stride
+ * @param[in]       bias        pointer to bias
+ * @param[in]       bias_shift  amount of left-shift for bias
+ * @param[in]       out_shift   amount of right-shift for output
+ * @param[in,out]   Im_out      pointer to output tensor
+ * @param[in]       dim_im_out  output tensor dimension
+ * @param[in,out]   bufferA     pointer to buffer space for input
+ * @param[in,out]   bufferB     pointer to buffer space for output
+ * @return     The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in equals ch_im_out
+ *
+ * Implementation:
+ * There are 3 nested loop here:
+ * Inner loop: calculate each output value with MAC instruction over an accumulator
+ * Mid   loop: loop over different output channel
+ * Outer loop: loop over different output (x, y)
+ */
+
+arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
+                                               const uint16_t dim_im_in,
+                                               const uint16_t ch_im_in,
+                                               const q7_t * wt,
+                                               const uint16_t ch_im_out,
+                                               const uint16_t dim_kernel,
+                                               const uint16_t padding,
+                                               const uint16_t stride,
+                                               const q7_t * bias,
+                                               const uint16_t bias_shift,
+                                               const uint16_t out_shift,
+                                               q7_t * Im_out, 
+                                               const uint16_t dim_im_out, 
+                                               q15_t * bufferA, 
+                                               q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x;
+    int16_t   i_ker_y, i_ker_x;
+    q7_t     *colBuffer = (q7_t *) bufferA;
+    q7_t     *pBuffer = colBuffer;
+    const q7_t *pBias = bias;
+    q7_t     *pOut = Im_out;
+    uint16_t  rowCnt;
+    uint16_t  row_shift;
+
+    /* do some checking here, basically ch_im_in == ch_im_out */
+    if (ch_im_in != ch_im_out)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            /* we first do im2col here */
+            for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+                    {
+                        /* arm_fill_q7(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            /* we will do the computation here for each channel */
+            rowCnt = ch_im_out >> 2;
+            row_shift = 0;
+            pBias = bias;
+
+            while (rowCnt)
+            {
+                q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+                uint16_t  colCnt = (dim_kernel * dim_kernel) >> 1;
+                q7_t     *pB = colBuffer + row_shift;
+                const q7_t *pA = wt + row_shift;
+                row_shift += 4;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+                while (colCnt)
+                {
+                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
+
+                    inB1 = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    opB = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    inB2 = __PKHTB(opB, inB1, 16);
+                    inB1 = __PKHBT(inB1, opB, 16);
+                    inA1 = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    opB = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inA2 = __PKHTB(opB, inA1, 16);
+                    inA1 = __PKHBT(inA1, opB, 16);
+                    opA = __SXTB16(inA1);
+                    opB = __SXTB16(inB1);
+                    sum = __SMLAD(opA, opB, sum);
+                    opA = __SXTB16(__ROR(inA1, 8));
+                    opB = __SXTB16(__ROR(inB1, 8));
+                    sum2 = __SMLAD(opA, opB, sum2);
+                    opA = __SXTB16(inA2);
+                    opB = __SXTB16(inB2);
+                    sum3 = __SMLAD(opA, opB, sum3);
+                    opA = __SXTB16(__ROR(inA2, 8));
+                    opB = __SXTB16(__ROR(inB2, 8));
+                    sum4 = __SMLAD(opA, opB, sum4);
+                    colCnt--;
+                }
+#else
+
+                while (colCnt)
+                {
+                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
+
+                    inB1 = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    opB = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    inB2 = __PKHBT(opB, inB1, 16);
+                    inB1 = __PKHTB(inB1, opB, 16);
+                    inA1 = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    opB = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inA2 = __PKHBT(opB, inA1, 16);
+                    inA1 = __PKHTB(inA1, opB, 16);
+                    opA = __SXTB16(inA1);
+                    opB = __SXTB16(inB1);
+                    sum2 = __SMLAD(opA, opB, sum2);
+                    opA = __SXTB16(__ROR(inA1, 8));
+                    opB = __SXTB16(__ROR(inB1, 8));
+                    sum = __SMLAD(opA, opB, sum);
+                    opA = __SXTB16(inA2);
+                    opB = __SXTB16(inB2);
+                    sum4 = __SMLAD(opA, opB, sum4);
+                    opA = __SXTB16(__ROR(inA2, 8));
+                    opB = __SXTB16(__ROR(inB2, 8));
+                    sum3 = __SMLAD(opA, opB, sum3);
+                    colCnt--;
+                }
+
+#endif                          /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+#ifndef ARM_MATH_BIG_ENDIAN
+                /*
+                 *   r0    r1    r2    r3    r4   r5
+                 *  inA1, inA2, inB1, inB2, opA, opB
+                 */
+
+                asm volatile ("COL_LOOP_%=:\n"
+                              "ldr.w r2, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "pkhtb r3, r5, r2, ASR #16\n"
+                              "pkhbt r2, r2, r5, LSL #16\n"
+                              "ldr.w r0, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "pkhtb r1, r5, r0, ASR #16\n"
+                              "pkhbt r0, r0, r5, LSL #16\n"
+                              "sxtb16 r4, r0\n"
+                              "sxtb16 r5, r2\n"
+                              "smlad %[sum], r4, r5, %[sum]\n"
+                              "mov.w r4, r0, ror #8\n"
+                              "mov.w r5, r2, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum2], r4, r5, %[sum2]\n"
+                              "sxtb16 r4, r1\n"
+                              "sxtb16 r5, r3\n"
+                              "smlad %[sum3], r4, r5, %[sum3]\n"
+                              "mov.w r4, r1, ror #8\n"
+                              "mov.w r5, r3, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum4], r4, r5, %[sum4]\n"
+                              "subs %[colCnt], #1\n"
+                              "bne COL_LOOP_%=\n":[sum]
+                              "+r"(sum),[sum2] "+r"(sum2),
+                              [sum3] "+r"(sum3),
+                              [sum4] "+r"(sum4),[pB] "+r"(pB),
+                              [pA] "+r"(pA):[colCnt]
+                              "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#else
+                /*
+                 *  r0    r1    r2    r3    r4   r5
+                 * inA1, inA2, inB1, inB2, opA, opB
+                 */
+                asm volatile ("COL_LOOP_%=:\n"
+                              "ldr.w r2, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "pkhbt r3, r5, r2, LSL #16\n"
+                              "pkhtb r2, r2, r5, ASR #16\n"
+                              "ldr.w r0, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "pkhbt r1, r5, r0, LSL #16\n"
+                              "pkhtb r0, r0, r5, ASR #16\n"
+                              "sxtb16 r4, r0\n"
+                              "sxtb16 r5, r2\n"
+                              "smlad %[sum2], r4, r5, %[sum2]\n"
+                              "mov.w r4, r0, ror #8\n"
+                              "mov.w r5, r2, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum], r4, r5, %[sum]\n"
+                              "sxtb16 r4, r1\n"
+                              "sxtb16 r5, r3\n"
+                              "smlad %[sum4], r4, r5, %[sum4]\n"
+                              "mov.w r4, r1, ror #8\n"
+                              "mov.w r5, r3, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum3], r4, r5, %[sum3]\n"
+                              "subs %[colCnt], #1\n"
+                              "bne COL_LOOP_%=\n":[sum]
+                              "+r"(sum),[sum2] "+r"(sum2),
+                              [sum3] "+r"(sum3),
+                              [sum4] "+r"(sum4),[pB] "+r"(pB),
+                              [pA] "+r"(pA):[colCnt]
+                              "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+
+#endif                          /* ARM_MATH_BIG_ENDIAN */
+
+#endif                          /* USE_INTRINSIC */
+
+                colCnt = (dim_kernel * dim_kernel) & 0x1;
+                while (colCnt)
+                {
+                    union arm_nnword inA, inB;
+                    inA.word = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inB.word = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    sum += inA.bytes[0] * inB.bytes[0];
+                    sum2 += inA.bytes[1] * inB.bytes[1];
+                    sum3 += inA.bytes[2] * inB.bytes[2];
+                    sum4 += inA.bytes[3] * inB.bytes[3];
+                    colCnt--;
+                }
+
+                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+                rowCnt--;
+            }
+
+            rowCnt = ch_im_out & 0x3;
+            while (rowCnt)
+            {
+                q7_t     *pB = colBuffer + row_shift;
+                const q7_t *pA = wt + row_shift;
+                q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                uint16_t  colCnt = (dim_kernel * dim_kernel);
+
+                row_shift += 1;
+
+                while (colCnt)
+                {
+                    q7_t      A1 = *pA;
+                    q7_t      B1 = *pB;
+                    pA += ch_im_in;
+                    pB += ch_im_in;
+                    sum += A1 * B1;
+
+                    colCnt--;
+                }
+                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+                rowCnt--;
+            }
+
+            /* clear counter and pointers */
+            pBuffer = colBuffer;
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    int       i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
+    int       conv_out;
+
+    /* do some checking here, basically ch_im_in == ch_im_out */
+    if (ch_im_in != ch_im_out)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+        {
+            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+            {
+                // for each output
+                conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+                for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
+                {
+                    for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
+                    {
+                        int       in_row = stride * i_out_y + i_ker_y - padding;
+                        int       in_col = stride * i_out_x + i_ker_x - padding;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+                        {
+                            conv_out +=
+                                Im_in[(in_row *
+                                       dim_im_in +
+                                       in_col) *
+                                      ch_im_in +
+                                      i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
+                        }
+                    }
+                }
+                Im_out[(i_out_y * dim_im_out +
+                        i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c
new file mode 100644
index 0000000..5989304
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c
@@ -0,0 +1,411 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_depthwise_separable_conv_HWC_q7_nonsquare.c
+ * Description:  Q7 depthwise separable convolution function (non-square shape)
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Q7 depthwise separable convolution function (non-square shape)
+ * @param[in]       Im_in         pointer to input tensor
+ * @param[in]       dim_im_in_x   input tensor dimention x
+ * @param[in]       dim_im_in_y   input tensor dimention y
+ * @param[in]       ch_im_in      number of input tensor channels
+ * @param[in]       wt            pointer to kernel weights
+ * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
+ * @param[in]       dim_kernel_x  filter kernel size x
+ * @param[in]       dim_kernel_y  filter kernel size y
+ * @param[in]       padding_x     padding sizes x
+ * @param[in]       padding_y     padding sizes y
+ * @param[in]       stride_x      convolution stride x
+ * @param[in]       stride_y      convolution stride y
+ * @param[in]       bias          pointer to bias
+ * @param[in]       bias_shift    amount of left-shift for bias
+ * @param[in]       out_shift     amount of right-shift for output
+ * @param[in,out]   Im_out        pointer to output tensor
+ * @param[in]       dim_im_out_x  output tensor dimension x
+ * @param[in]       dim_im_out_y  output tensor dimension y
+ * @param[in,out]   bufferA       pointer to buffer space for input 
+ * @param[in,out]   bufferB       pointer to buffer space for output
+ * @return     The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ *   ch_im_in is multiple of 2
+ *   ch_im_out is multiple of 2
+ */
+
+arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
+                                                         const uint16_t dim_im_in_x,
+                                                         const uint16_t dim_im_in_y,
+                                                         const uint16_t ch_im_in,
+                                                         const q7_t * wt,
+                                                         const uint16_t ch_im_out,
+                                                         const uint16_t dim_kernel_x,
+                                                         const uint16_t dim_kernel_y,
+                                                         const uint16_t padding_x,
+                                                         const uint16_t padding_y,
+                                                         const uint16_t stride_x,
+                                                         const uint16_t stride_y,
+                                                         const q7_t * bias,
+                                                         const uint16_t bias_shift,
+                                                         const uint16_t out_shift,
+                                                         q7_t * Im_out,
+                                                         const uint16_t dim_im_out_x,
+                                                         const uint16_t dim_im_out_y, 
+                                                         q15_t * bufferA, 
+                                                         q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+/*
+ * Implementation:
+ * There are 3 nested loop here:
+ * Inner loop: calculate each output value with MAC instruction over an accumulator
+ * Mid   loop: loop over different output channel
+ * Outer loop: loop over different output (x, y)
+ *
+ */
+
+    int16_t   i_out_y, i_out_x;
+    int16_t   i_ker_y, i_ker_x;
+    q7_t     *colBuffer = (q7_t *) bufferA;
+    q7_t     *pBuffer = colBuffer;
+    const q7_t *pBias = bias;
+    q7_t     *pOut = Im_out;
+    uint16_t  rowCnt;
+    uint16_t  row_shift;
+
+    /* do some checking here, basically ch_im_in == ch_im_out */
+    if (ch_im_in != ch_im_out)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* we first do im2col here */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q7(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            /* we will do the computation here for each channel */
+            rowCnt = ch_im_out >> 2;
+            row_shift = 0;
+            pBias = bias;
+
+            while (rowCnt)
+            {
+                q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+                uint16_t  colCnt = (dim_kernel_x * dim_kernel_y) >> 1;
+                q7_t     *pB = colBuffer + row_shift;
+                const q7_t *pA = wt + row_shift;
+                row_shift += 4;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+                while (colCnt)
+                {
+                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
+
+                    inB1 = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    opB = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    inB2 = __PKHTB(opB, inB1, 16);
+                    inB1 = __PKHBT(inB1, opB, 16);
+                    inA1 = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    opB = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inA2 = __PKHTB(opB, inA1, 16);
+                    inA1 = __PKHBT(inA1, opB, 16);
+                    opA = __SXTB16(inA1);
+                    opB = __SXTB16(inB1);
+                    sum = __SMLAD(opA, opB, sum);
+                    opA = __SXTB16(__ROR(inA1, 8));
+                    opB = __SXTB16(__ROR(inB1, 8));
+                    sum2 = __SMLAD(opA, opB, sum2);
+                    opA = __SXTB16(inA2);
+                    opB = __SXTB16(inB2);
+                    sum3 = __SMLAD(opA, opB, sum3);
+                    opA = __SXTB16(__ROR(inA2, 8));
+                    opB = __SXTB16(__ROR(inB2, 8));
+                    sum4 = __SMLAD(opA, opB, sum4);
+                    colCnt--;
+                }
+#else
+
+                while (colCnt)
+                {
+                    q31_t     inA1, inA2, inB1, inB2, opA, opB;
+
+                    inB1 = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    opB = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    inB2 = __PKHBT(opB, inB1, 16);
+                    inB1 = __PKHTB(inB1, opB, 16);
+                    inA1 = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    opB = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inA2 = __PKHBT(opB, inA1, 16);
+                    inA1 = __PKHTB(inA1, opB, 16);
+                    opA = __SXTB16(inA1);
+                    opB = __SXTB16(inB1);
+                    sum2 = __SMLAD(opA, opB, sum2);
+                    opA = __SXTB16(__ROR(inA1, 8));
+                    opB = __SXTB16(__ROR(inB1, 8));
+                    sum = __SMLAD(opA, opB, sum);
+                    opA = __SXTB16(inA2);
+                    opB = __SXTB16(inB2);
+                    sum4 = __SMLAD(opA, opB, sum4);
+                    opA = __SXTB16(__ROR(inA2, 8));
+                    opB = __SXTB16(__ROR(inB2, 8));
+                    sum3 = __SMLAD(opA, opB, sum3);
+                    colCnt--;
+                }
+
+#endif                          /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+#ifndef ARM_MATH_BIG_ENDIAN
+                //  r0    r1    r2    r3    r4   r5
+                // inA1, inA2, inB1, inB2, opA, opB
+                asm volatile ("COL_LOOP:\n"
+                              "ldr.w r2, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "pkhtb r3, r5, r2, ASR #16\n"
+                              "pkhbt r2, r2, r5, LSL #16\n"
+                              "ldr.w r0, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "pkhtb r1, r5, r0, ASR #16\n"
+                              "pkhbt r0, r0, r5, LSL #16\n"
+                              "sxtb16 r4, r0\n"
+                              "sxtb16 r5, r2\n"
+                              "smlad %[sum], r4, r5, %[sum]\n"
+                              "mov.w r4, r0, ror #8\n"
+                              "mov.w r5, r2, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum2], r4, r5, %[sum2]\n"
+                              "sxtb16 r4, r1\n"
+                              "sxtb16 r5, r3\n"
+                              "smlad %[sum3], r4, r5, %[sum3]\n"
+                              "mov.w r4, r1, ror #8\n"
+                              "mov.w r5, r3, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum4], r4, r5, %[sum4]\n"
+                              "subs %[colCnt], #1\n"
+                              "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
+                              [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
+                              [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#else
+                //  r0    r1    r2    r3    r4   r5
+                // inA1, inA2, inB1, inB2, opA, opB
+                asm volatile ("COL_LOOP:\n"
+                              "ldr.w r2, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pB], #0]\n"
+                              "add.w %[pB], %[pB], %[ch_im_in]\n"
+                              "pkhbt r3, r5, r2, LSL #16\n"
+                              "pkhtb r2, r2, r5, ASR #16\n"
+                              "ldr.w r0, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "ldr.w r5, [%[pA], #0]\n"
+                              "add.w %[pA], %[pA], %[ch_im_in]\n"
+                              "pkhbt r1, r5, r0, LSL #16\n"
+                              "pkhtb r0, r0, r5, ASR #16\n"
+                              "sxtb16 r4, r0\n"
+                              "sxtb16 r5, r2\n"
+                              "smlad %[sum2], r4, r5, %[sum2]\n"
+                              "mov.w r4, r0, ror #8\n"
+                              "mov.w r5, r2, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum], r4, r5, %[sum]\n"
+                              "sxtb16 r4, r1\n"
+                              "sxtb16 r5, r3\n"
+                              "smlad %[sum4], r4, r5, %[sum4]\n"
+                              "mov.w r4, r1, ror #8\n"
+                              "mov.w r5, r3, ror #8\n"
+                              "sxtb16 r4, r4\n"
+                              "sxtb16 r5, r5\n"
+                              "smlad %[sum3], r4, r5, %[sum3]\n"
+                              "subs %[colCnt], #1\n"
+                              "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
+                              [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
+                              [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#endif                          /*ARM_MATH_BIG_ENDIAN */
+
+#endif                          /* USE_INTRINSIC */
+
+                colCnt = (dim_kernel_x * dim_kernel_y) & 0x1;
+                while (colCnt)
+                {
+                    union arm_nnword inA, inB;
+                    inA.word = *__SIMD32(pA);
+                    pA += ch_im_in;
+                    inB.word = *__SIMD32(pB);
+                    pB += ch_im_in;
+                    sum += inA.bytes[0] * inB.bytes[0];
+                    sum2 += inA.bytes[1] * inB.bytes[1];
+                    sum3 += inA.bytes[2] * inB.bytes[2];
+                    sum4 += inA.bytes[3] * inB.bytes[3];
+                    colCnt--;
+                }
+
+                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+                *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+                rowCnt--;
+            }
+
+            rowCnt = ch_im_out & 0x3;
+            while (rowCnt)
+            {
+                q7_t     *pB = colBuffer + row_shift;
+                const q7_t *pA = wt + row_shift;
+                q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+                uint16_t  colCnt = (dim_kernel_x * dim_kernel_y);
+
+                row_shift += 1;
+
+                while (colCnt)
+                {
+                    q7_t      A1 = *pA;
+                    q7_t      B1 = *pB;
+                    pA += ch_im_in;
+                    pB += ch_im_in;
+                    sum += A1 * B1;
+
+                    colCnt--;
+                }
+                *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+                rowCnt--;
+            }
+
+            // clear counter and pointers
+            pBuffer = colBuffer;
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    int       i_out_y, i_out_x, i_ch_out;
+    int       i_ker_y, i_ker_x; 
+
+    /* do some checking here, basically ch_im_in == ch_im_out */
+    if (ch_im_in != ch_im_out)
+    {
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+            {
+                // for each output 
+                int       conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+                for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
+                {
+                    for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
+                    {
+                        int       in_row = stride_y * i_out_y + i_ker_y - padding_y;
+                        int       in_col = stride_x * i_out_x + i_ker_x - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *                        
+                                wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
+                        }
+                    }
+                }
+                Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
+                    (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c
new file mode 100644
index 0000000..24ab412
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c
@@ -0,0 +1,187 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_nn_mat_mult_kernel_q7_q15.c
+ * Description:  Matrix-multiplication function for convolution
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+  /**
+   * @brief Matrix-multiplication function for convolution
+   * @param[in]       pA          pointer to operand A
+   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
+   * @param[in]       ch_im_out   numRow of A
+   * @param[in]       numCol_A    numCol of A
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in]       bias        the bias
+   * @param[in,out]   pOut        pointer to output
+   * @return     The function returns the incremented output pointer
+   *
+   * @details
+   *
+   * This function does the matrix multiplication with weight matrix
+   * and 2 columns from im2col. 
+   */
+
+q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
+                                        const q15_t * pInBuffer,
+                                        const uint16_t ch_im_out,
+                                        const uint16_t numCol_A,
+                                        const uint16_t bias_shift,
+                                        const uint16_t out_shift, 
+                                        const q7_t * bias, 
+                                        q7_t * pOut)
+{
+#if defined (ARM_MATH_DSP)
+    /* set up the second output pointers */
+    q7_t     *pOut2 = pOut + ch_im_out;
+    const q7_t *pBias = bias;
+
+    uint16_t  rowCnt = ch_im_out >> 1;
+    /* this loop over rows in A */
+    while (rowCnt)
+    {
+        /* setup pointers for B */
+        const q15_t *pB = pInBuffer;
+        const q15_t *pB2 = pB + numCol_A;
+
+        /* align the second pointer for A */
+        const q7_t *pA2 = pA + numCol_A;
+
+        /* init the sum with bias */
+        q31_t     sum =  ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+        uint16_t  colCnt = numCol_A >> 2;
+        /* accumulate over the vector */
+        while (colCnt)
+        {
+            q31_t     inA11, inA12, inA21, inA22;
+            q31_t     inB1 = *__SIMD32(pB)++;
+            q31_t     inB2 = *__SIMD32(pB2)++;
+
+            pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
+            pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22);
+
+            sum = __SMLAD(inA11, inB1, sum);
+            sum2 = __SMLAD(inA11, inB2, sum2);
+            sum3 = __SMLAD(inA21, inB1, sum3);
+            sum4 = __SMLAD(inA21, inB2, sum4);
+
+            inB1 = *__SIMD32(pB)++;
+            inB2 = *__SIMD32(pB2)++;
+
+            sum = __SMLAD(inA12, inB1, sum);
+            sum2 = __SMLAD(inA12, inB2, sum2);
+            sum3 = __SMLAD(inA22, inB1, sum3);
+            sum4 = __SMLAD(inA22, inB2, sum4);
+
+            colCnt--;
+        }                       /* while over colCnt */
+        colCnt = numCol_A & 0x3;
+        while (colCnt)
+        {
+            q7_t      inA1 = *pA++;
+            q15_t     inB1 = *pB++;
+            q7_t      inA2 = *pA2++;
+            q15_t     inB2 = *pB2++;
+
+            sum += inA1 * inB1;
+            sum2 += inA1 * inB2;
+            sum3 += inA2 * inB1;
+            sum4 += inA2 * inB2;
+            colCnt--;
+        }                       /* while over colCnt */
+        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+        *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+        /* skip the row computed with A2 */
+        pA += numCol_A;
+        rowCnt--;
+    }                           /* for over ch_im_out */
+
+    /* compute left-over row if any */
+    if (ch_im_out & 0x1)
+    {
+        /* setup pointers for B */
+        const q15_t *pB = pInBuffer;
+        const q15_t *pB2 = pB + numCol_A;
+
+        /* load the bias */
+        q31_t     sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+        uint16_t  colCnt = numCol_A >> 2;
+        while (colCnt)
+        {
+            q31_t     inA11, inA12;
+            q31_t     inB1 = *__SIMD32(pB)++;
+            q31_t     inB2 = *__SIMD32(pB2)++;
+
+            pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
+
+            sum = __SMLAD(inA11, inB1, sum);
+            sum2 = __SMLAD(inA11, inB2, sum2);
+
+            inB1 = *__SIMD32(pB)++;
+            inB2 = *__SIMD32(pB2)++;
+            sum = __SMLAD(inA12, inB1, sum);
+            sum2 = __SMLAD(inA12, inB2, sum2);
+
+            colCnt--;
+        }
+        colCnt = numCol_A & 0x3;
+        while (colCnt)
+        {
+            q7_t      inA1 = *pA++;
+            q15_t     inB1 = *pB++;
+            q15_t     inB2 = *pB2++;
+
+            sum += inA1 * inB1;
+            sum2 += inA1 * inB2;
+            colCnt--;
+        }
+
+        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+    }
+
+    pOut += ch_im_out;
+
+    /* return the new output pointer with offset */
+    return pOut;
+#else
+    /* To be completed */
+    return NULL;
+#endif                          /* ARM_MATH_DSP */
+
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c
new file mode 100644
index 0000000..36af21a
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c
@@ -0,0 +1,138 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_nn_mat_mult_kernel_q7_q15_reordered.c
+ * Description:  Matrix-multiplication function for convolution with reordered columns
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+#include "arm_math.h"
+
+  /**
+   * @brief Matrix-multiplication function for convolution with reordered columns
+   * @param[in]       pA          pointer to operand A
+   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
+   * @param[in]       ch_im_out   numRow of A
+   * @param[in]       numCol_A    numCol of A
+   * @param[in]       bias_shift  amount of left-shift for bias
+   * @param[in]       out_shift   amount of right-shift for output
+   * @param[in]       bias        the bias
+   * @param[in,out]   pOut        pointer to output
+   * @return     The function returns the incremented output pointer
+   *
+   * @details
+   *
+   * This function assumes that data in pInBuffer are reordered
+   */
+
+q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
+                                                  const q15_t * pInBuffer,
+                                                  const uint16_t ch_im_out,
+                                                  const uint16_t numCol_A,
+                                                  const uint16_t bias_shift,
+                                                  const uint16_t out_shift, 
+                                                  const q7_t * bias, 
+                                                  q7_t * pOut)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* set up the second output pointers */
+    q7_t     *pOut2 = pOut + ch_im_out;
+    int       i;
+
+    /* this loop over rows in A */
+    for (i = 0; i < ch_im_out; i += 2)
+    {
+        /* setup pointers for B */
+        const q15_t *pB = pInBuffer;
+        const q15_t *pB2 = pB + numCol_A;
+
+        /* align the second pointer for A */
+        const q7_t *pA2 = pA + numCol_A;
+
+        /* init the sum with bias */
+        q31_t     sum =  ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
+        q31_t     sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
+
+        uint16_t  colCnt = numCol_A >> 2;
+        /* accumulate over the vector */
+        while (colCnt)
+        {
+            q31_t     inA11, inA12, inA21, inA22;
+            q31_t     inB1 = *__SIMD32(pB)++;
+            q31_t     inB2 = *__SIMD32(pB2)++;
+
+            pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12);
+            pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22);
+
+            sum = __SMLAD(inA11, inB1, sum);
+            sum2 = __SMLAD(inA11, inB2, sum2);
+            sum3 = __SMLAD(inA21, inB1, sum3);
+            sum4 = __SMLAD(inA21, inB2, sum4);
+
+            inB1 = *__SIMD32(pB)++;
+            inB2 = *__SIMD32(pB2)++;
+
+            sum = __SMLAD(inA12, inB1, sum);
+            sum2 = __SMLAD(inA12, inB2, sum2);
+            sum3 = __SMLAD(inA22, inB1, sum3);
+            sum4 = __SMLAD(inA22, inB2, sum4);
+
+            colCnt--;
+        }                       /* while over colCnt */
+        colCnt = numCol_A & 0x3;
+        while (colCnt)
+        {
+            q7_t      inA1 = *pA++;
+            q15_t     inB1 = *pB++;
+            q7_t      inA2 = *pA2++;
+            q15_t     inB2 = *pB2++;
+
+            sum += inA1 * inB1;
+            sum2 += inA1 * inB2;
+            sum3 += inA2 * inB1;
+            sum4 += inA2 * inB2;
+            colCnt--;
+        }                       /* while over colCnt */
+        *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+        *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+        *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+        *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+        /* skip the row computed with A2 */
+        pA += numCol_A;
+    }                           /* for over ch_im_out */
+
+    pOut += ch_im_out;
+
+    /* return the new output pointer with offset */
+    return pOut;
+#else
+    /* To be completed */
+    return NULL;
+#endif                          /* ARM_MATH_DSP */
+}
-- 
cgit