From 94f94260ace13688285fc8c62687079b26c18854 Mon Sep 17 00:00:00 2001 From: jaseg Date: Sun, 20 Dec 2020 15:18:02 +0100 Subject: Submodule-cache WIP --- .../Drivers/CMSIS/NN/Include/arm_nnfunctions.h | 1010 -------------------- 1 file changed, 1010 deletions(-) delete mode 100644 fw/cdc-dials/Drivers/CMSIS/NN/Include/arm_nnfunctions.h (limited to 'fw/cdc-dials/Drivers/CMSIS/NN/Include/arm_nnfunctions.h') diff --git a/fw/cdc-dials/Drivers/CMSIS/NN/Include/arm_nnfunctions.h b/fw/cdc-dials/Drivers/CMSIS/NN/Include/arm_nnfunctions.h deleted file mode 100644 index 96c59c2..0000000 --- a/fw/cdc-dials/Drivers/CMSIS/NN/Include/arm_nnfunctions.h +++ /dev/null @@ -1,1010 +0,0 @@ -/* - * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* ---------------------------------------------------------------------- - * Project: CMSIS NN Library - * Title: arm_nnfunctions.h - * Description: Public header file for CMSIS NN Library - * - * $Date: 13. July 2018 - * $Revision: V.1.0.0 - * - * Target Processor: Cortex-M cores - * -------------------------------------------------------------------- */ - -/** - \mainpage CMSIS NN Software Library - * - * Introduction - * ------------ - * - * This user manual describes the CMSIS NN software library, - * a collection of efficient neural network kernels developed to maximize the - * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. - * - * The library is divided into a number of functions each covering a specific category: - * - Neural Network Convolution Functions - * - Neural Network Activation Functions - * - Fully-connected Layer Functions - * - Neural Network Pooling Functions - * - Softmax Functions - * - Neural Network Support Functions - * - * The library has separate functions for operating on different weight and activation data - * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the - * kernels are included in the function description. The implementation details are also - * described in this paper [1]. - * - * Block Diagram - * -------- - * \image html CMSIS-NN-OVERVIEW.PNG - * - * Examples - * -------- - * - * The library ships with a number of examples which demonstrate how to use the library functions. - * - * Pre-processor Macros - * ------------ - * - * Each library project have differant pre-processor macros. - * - * - ARM_MATH_DSP: - * - * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions. - * - * - ARM_MATH_BIG_ENDIAN: - * - * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. - * - * - ARM_NN_TRUNCATE: - * - * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. - * - * Copyright Notice - * ------------ - * - * Copyright (C) 2010-2018 Arm Limited. All rights reserved. - * - * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 - */ - -/** - * @defgroup groupNN Neural Network Functions - * These functions perform basic operations for neural network layers. - */ - -#ifndef _ARM_NNFUNCTIONS_H -#define _ARM_NNFUNCTIONS_H - -#include "arm_nnsupportfunctions.h" -#include "arm_nn_tables.h" - -#define USE_INTRINSIC - -//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ - -#ifdef __cplusplus -extern "C" -{ -#endif - -/** - * @defgroup NNConv Neural Network Convolution Functions - * - * Perform convolution layer - * - * The convolution is implemented in 2 steps: im2col and GEMM - * - * im2col is a process of converting each patch of image data into - * a column. After im2col, the convolution is computed as matrix-matrix - * multiplication. - * - * To reduce the memory footprint, the im2col is performed partially. - * Each iteration, only a few column (i.e., patches) are generated and - * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. - * - */ - - /** - * @brief Basic Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Basic Q7 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimention x - * @param[in] dim_im_in_y input tensor dimention y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns ARM_MATH_SUCCESS - */ - - arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Basic Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - - arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimention x - * @param[in] dim_im_in_y input tensor dimention y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - - arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimention x - * @param[in] dim_im_in_y input tensor dimention y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 - * and dim_kernel_y=1). It can be used for - * second half of MobileNets after depthwise separable convolution. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 version of convolution for RGB image - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This kernel is written exclusively for convolution with ch_im_in - * equals 3. This applies on the first layer of CNNs which has input - * image with RGB format. - */ - - arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - - arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q15 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimention x - * @param[in] dim_im_in_y input tensor dimention y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * @details - * - * Buffer size: - * - * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel - * - * bufferB size: 0 - * - * Input dimension constraints: - * - * ch_im_in is multiple of 2 - * - * ch_im_out is multipe of 2 - * - */ - - arm_status - arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 depthwise separable convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - - arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 depthwise separable convolution function (non-square shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimention x - * @param[in] dim_im_in_y input tensor dimention y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding sizes x - * @param[in] padding_y padding sizes y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - -/** - * @defgroup FC Fully-connected Layer Functions - * - * Perform fully-connected layer - * - * Fully-connected layer is basically a matrix-vector multiplication - * with bias. The matrix is the weights and the input/output vectors - * are the activation values. Supported {weight, activation} precisions - * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. - * - * Here we have two types of kernel functions. The basic function - * implements the function using regular GEMV approach. The opt functions - * operates with weights in interleaved formats. - * - */ - - /** - * @brief Q7 basic fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_q7(const q7_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_q7_opt(const q7_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Q15 basic fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_q15(const q15_t * pV, - const q15_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Q15 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_q15_opt(const q15_t * pV, - const q15_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Mixed Q15-Q7 fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Mixed Q15-Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns ARM_MATH_SUCCESS - * - */ - - arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - -/** - * @brief Matrix-Multiplication Kernels for Convolution - * - * These functions are used within convolution layer functions for - * matrix multiplication. - * - * The implementation is similar to CMSIS-DSP arm_mat_mult functions - * with one Q7 and one Q15 operands. The Q15 operand is the im2col - * output which is always with 2 columns. - * - */ - - /** - * @brief Matrix-multiplication function for convolution - * @param[in] pA pointer to operand A - * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - * @param[in] ch_im_out numRow of A - * @param[in] numCol_A numCol of A - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias the bias - * @param[in,out] pOut pointer to output - * @return The function returns the incremented output pointer - */ - - q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, - const q15_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - - /** - * @brief Matrix-multiplication function for convolution with reordered columns - * @param[in] pA pointer to operand A - * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - * @param[in] ch_im_out numRow of A - * @param[in] numCol_A numCol of A - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias the bias - * @param[in,out] pOut pointer to output - * @return The function returns the incremented output pointer - */ - - q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, - const q15_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - -#ifdef __cplusplus -} -#endif - -/* - * Other functions - * These layers are typically not timing critical - * Basic implementation is supported here - */ - -#ifdef __cplusplus -extern "C" -{ -#endif - -/** - * @defgroup Acti Neural Network Activation Functions - * - * Perform activation layers, including ReLU (Rectified Linear Unit), - * sigmoid and tanh - * - */ - - /** - * @brief Q7 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - - void arm_relu_q7(q7_t * data, uint16_t size); - - /** - * @brief Q15 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - - void arm_relu_q15(q15_t * data, uint16_t size); - - /** - * @brief Q7 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - */ - - void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, - arm_nn_activation_type type); - - /** - * @brief Q15 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - */ - - void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, - arm_nn_activation_type type); - -/** - * @defgroup Pooling Neural Network Pooling Functions - * - * Perform pooling functions, including max pooling and average pooling - * - */ - - /** - * @brief Q7 max pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - - void arm_maxpool_q7_HWC(q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t * bufferA, - q7_t * Im_out); - - /** - * @brief Q7 average pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimention - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - - void arm_avepool_q7_HWC(q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t * bufferA, - q7_t * Im_out); - -/** - * @defgroup Softmax Softmax Functions - * - * EXP(2) based softmax function - * - */ - - /** - * @brief Q7 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimention - * @param[out] p_out pointer to output vector - * @return none. - * - */ - - void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); - - /** - * @brief Q15 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimention - * @param[out] p_out pointer to output vector - * @return none. - * - */ - - void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); - -#ifdef __cplusplus -} -#endif - -#endif -- cgit