From 94f94260ace13688285fc8c62687079b26c18854 Mon Sep 17 00:00:00 2001 From: jaseg Date: Sun, 20 Dec 2020 15:18:02 +0100 Subject: Submodule-cache WIP --- .../FilteringFunctions/arm_correlate_fast_q31.c | 600 --------------------- 1 file changed, 600 deletions(-) delete mode 100644 fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c') diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c deleted file mode 100644 index 53373ac..0000000 --- a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c +++ /dev/null @@ -1,600 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_correlate_fast_q31.c - * Description: Fast Q31 Correlation - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: Cortex-M cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "arm_math.h" - -/** - * @ingroup groupFilters - */ - -/** - * @addtogroup Corr - * @{ - */ - -/** - * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - * - * @details - * Scaling and Overflow Behavior: - * - * \par - * This function is optimized for speed at the expense of fixed-point precision and overflow protection. - * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. - * These intermediate results are accumulated in a 32-bit register in 2.30 format. - * Finally, the accumulator is saturated and converted to a 1.31 result. - * - * \par - * The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result. - * In order to avoid overflows completely the input signals must be scaled down. - * The input signals should be scaled down to avoid intermediate overflows. - * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a - * maximum of min(srcALen, srcBLen) number of additions is carried internally. - * - * \par - * See arm_correlate_q31() for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. - */ - -void arm_correlate_fast_q31( - q31_t * pSrcA, - uint32_t srcALen, - q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst) -{ - q31_t *pIn1; /* inputA pointer */ - q31_t *pIn2; /* inputB pointer */ - q31_t *pOut = pDst; /* output pointer */ - q31_t *px; /* Intermediate inputA pointer */ - q31_t *py; /* Intermediate inputB pointer */ - q31_t *pSrc1; /* Intermediate pointers */ - q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ - q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */ - uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */ - int32_t inc = 1; /* Destination address modifier */ - - - /* The algorithm implementation is based on the lengths of the inputs. */ - /* srcB is always made to slide across srcA. */ - /* So srcBLen is always considered as shorter or equal to srcALen */ - if (srcALen >= srcBLen) - { - /* Initialization of inputA pointer */ - pIn1 = (pSrcA); - - /* Initialization of inputB pointer */ - pIn2 = (pSrcB); - - /* Number of output samples is calculated */ - outBlockSize = (2U * srcALen) - 1U; - - /* When srcALen > srcBLen, zero padding is done to srcB - * to make their lengths equal. - * Instead, (outBlockSize - (srcALen + srcBLen - 1)) - * number of output samples are made zero */ - j = outBlockSize - (srcALen + (srcBLen - 1U)); - - /* Updating the pointer position to non zero value */ - pOut += j; - - } - else - { - /* Initialization of inputA pointer */ - pIn1 = (pSrcB); - - /* Initialization of inputB pointer */ - pIn2 = (pSrcA); - - /* srcBLen is always considered as shorter or equal to srcALen */ - j = srcBLen; - srcBLen = srcALen; - srcALen = j; - - /* CORR(x, y) = Reverse order(CORR(y, x)) */ - /* Hence set the destination pointer to point to the last output sample */ - pOut = pDst + ((srcALen + srcBLen) - 2U); - - /* Destination address modifier is set to -1 */ - inc = -1; - - } - - /* The function is internally - * divided into three parts according to the number of multiplications that has to be - * taken place between inputA samples and inputB samples. In the first part of the - * algorithm, the multiplications increase by one for every iteration. - * In the second part of the algorithm, srcBLen number of multiplications are done. - * In the third part of the algorithm, the multiplications decrease by one - * for every iteration.*/ - /* The algorithm is implemented in three stages. - * The loop counters of each stage is initiated here. */ - blockSize1 = srcBLen - 1U; - blockSize2 = srcALen - (srcBLen - 1U); - blockSize3 = blockSize1; - - /* -------------------------- - * Initializations of stage1 - * -------------------------*/ - - /* sum = x[0] * y[srcBlen - 1] - * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1] - * .... - * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] - */ - - /* In this stage the MAC operations are increased by 1 for every iteration. - The count variable holds the number of MAC operations performed */ - count = 1U; - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - pSrc1 = pIn2 + (srcBLen - 1U); - py = pSrc1; - - /* ------------------------ - * Stage1 process - * ----------------------*/ - - /* The first stage starts here */ - while (blockSize1 > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - /* x[0] * y[srcBLen - 4] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* x[1] * y[srcBLen - 3] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* x[2] * y[srcBLen - 2] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* x[3] * y[srcBLen - 1] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* If the count is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulates */ - /* x[0] * y[srcBLen - 1] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut = sum << 1; - /* Destination pointer is updated according to the address modifier, inc */ - pOut += inc; - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = pSrc1 - count; - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* -------------------------- - * Initializations of stage2 - * ------------------------*/ - - /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] - * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] - * .... - * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] - */ - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - py = pIn2; - - /* count is index by which the pointer pIn1 to be incremented */ - count = 0U; - - /* ------------------- - * Stage2 process - * ------------------*/ - - /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. - * So, to loop unroll over blockSize2, - * srcBLen should be greater than or equal to 4 */ - if (srcBLen >= 4U) - { - /* Loop unroll over blockSize2, by 4 */ - blkCnt = blockSize2 >> 2U; - - while (blkCnt > 0U) - { - /* Set all accumulators to zero */ - acc0 = 0; - acc1 = 0; - acc2 = 0; - acc3 = 0; - - /* read x[0], x[1], x[2] samples */ - x0 = *(px++); - x1 = *(px++); - x2 = *(px++); - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - do - { - /* Read y[0] sample */ - c0 = *(py++); - - /* Read x[3] sample */ - x3 = *(px++); - - /* Perform the multiply-accumulate */ - /* acc0 += x[0] * y[0] */ - acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); - /* acc1 += x[1] * y[0] */ - acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); - /* acc2 += x[2] * y[0] */ - acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); - /* acc3 += x[3] * y[0] */ - acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); - - /* Read y[1] sample */ - c0 = *(py++); - - /* Read x[4] sample */ - x0 = *(px++); - - /* Perform the multiply-accumulates */ - /* acc0 += x[1] * y[1] */ - acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32); - /* acc1 += x[2] * y[1] */ - acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32); - /* acc2 += x[3] * y[1] */ - acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32); - /* acc3 += x[4] * y[1] */ - acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32); - - /* Read y[2] sample */ - c0 = *(py++); - - /* Read x[5] sample */ - x1 = *(px++); - - /* Perform the multiply-accumulates */ - /* acc0 += x[2] * y[2] */ - acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32); - /* acc1 += x[3] * y[2] */ - acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32); - /* acc2 += x[4] * y[2] */ - acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32); - /* acc3 += x[5] * y[2] */ - acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32); - - /* Read y[3] sample */ - c0 = *(py++); - - /* Read x[6] sample */ - x2 = *(px++); - - /* Perform the multiply-accumulates */ - /* acc0 += x[3] * y[3] */ - acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32); - /* acc1 += x[4] * y[3] */ - acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32); - /* acc2 += x[5] * y[3] */ - acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32); - /* acc3 += x[6] * y[3] */ - acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32); - - - } while (--k); - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4U; - - while (k > 0U) - { - /* Read y[4] sample */ - c0 = *(py++); - - /* Read x[7] sample */ - x3 = *(px++); - - /* Perform the multiply-accumulates */ - /* acc0 += x[4] * y[4] */ - acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); - /* acc1 += x[5] * y[4] */ - acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); - /* acc2 += x[6] * y[4] */ - acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); - /* acc3 += x[7] * y[4] */ - acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); - - /* Reuse the present samples for the next MAC */ - x0 = x1; - x1 = x2; - x2 = x3; - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut = (q31_t) (acc0 << 1); - /* Destination pointer is updated according to the address modifier, inc */ - pOut += inc; - - *pOut = (q31_t) (acc1 << 1); - pOut += inc; - - *pOut = (q31_t) (acc2 << 1); - pOut += inc; - - *pOut = (q31_t) (acc3 << 1); - pOut += inc; - - /* Increment the pointer pIn1 index, count by 4 */ - count += 4U; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pIn2; - - - /* Decrement the loop counter */ - blkCnt--; - } - - /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. - ** No loop unrolling is used. */ - blkCnt = blockSize2 % 0x4U; - - while (blkCnt > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - /* Perform the multiply-accumulates */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut = sum << 1; - /* Destination pointer is updated according to the address modifier, inc */ - pOut += inc; - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pIn2; - - - /* Decrement the loop counter */ - blkCnt--; - } - } - else - { - /* If the srcBLen is not a multiple of 4, - * the blockSize2 loop cannot be unrolled by 4 */ - blkCnt = blockSize2; - - while (blkCnt > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Loop over srcBLen */ - k = srcBLen; - - while (k > 0U) - { - /* Perform the multiply-accumulate */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut = sum << 1; - /* Destination pointer is updated according to the address modifier, inc */ - pOut += inc; - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pIn2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - - /* -------------------------- - * Initializations of stage3 - * -------------------------*/ - - /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] - * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] - * .... - * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] - * sum += x[srcALen-1] * y[0] - */ - - /* In this stage the MAC operations are decreased by 1 for every iteration. - The count variable holds the number of MAC operations performed */ - count = srcBLen - 1U; - - /* Working pointer of inputA */ - pSrc1 = ((pIn1 + srcALen) - srcBLen) + 1U; - px = pSrc1; - - /* Working pointer of inputB */ - py = pIn2; - - /* ------------------- - * Stage3 process - * ------------------*/ - - while (blockSize3 > 0U) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while (k > 0U) - { - /* Perform the multiply-accumulates */ - /* sum += x[srcALen - srcBLen + 4] * y[3] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* sum += x[srcALen - srcBLen + 3] * y[2] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* sum += x[srcALen - srcBLen + 2] * y[1] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - /* sum += x[srcALen - srcBLen + 1] * y[0] */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* If the count is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4U; - - while (k > 0U) - { - /* Perform the multiply-accumulates */ - sum = (q31_t) ((((q63_t) sum << 32) + - ((q63_t) * px++ * (*py++))) >> 32); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut = sum << 1; - /* Destination pointer is updated according to the address modifier, inc */ - pOut += inc; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pIn2; - - /* Decrement the MAC count */ - count--; - - /* Decrement the loop counter */ - blockSize3--; - } - -} - -/** - * @} end of Corr group - */ -- cgit