From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../Source/FilteringFunctions/arm_conv_fast_q15.c | 1398 ++++++++++++++++++++ 1 file changed, 1398 insertions(+) create mode 100644 fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c') diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c new file mode 100644 index 0000000..16b0424 --- /dev/null +++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c @@ -0,0 +1,1398 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_conv_fast_q15.c + * Description: Fast Q15 Convolution + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupFilters + */ + +/** + * @addtogroup Conv + * @{ + */ + +/** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + * @return none. + * + * Scaling and Overflow Behavior: + * + * \par + * This fast version uses a 32-bit accumulator with 2.30 format. + * The accumulator maintains full precision of the intermediate multiplication results + * but provides only a single guard bit. There is no saturation on intermediate additions. + * Thus, if the accumulator overflows it wraps around and distorts the result. + * The input signals should be scaled down to avoid intermediate overflows. + * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, + * as maximum of min(srcALen, srcBLen) number of additions are carried internally. + * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. + * + * \par + * See arm_conv_q15() for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. + */ + +void arm_conv_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst) +{ +#ifndef UNALIGNED_SUPPORT_DISABLE + q15_t *pIn1; /* inputA pointer */ + q15_t *pIn2; /* inputB pointer */ + q15_t *pOut = pDst; /* output pointer */ + q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ + q15_t *px; /* Intermediate inputA pointer */ + q15_t *py; /* Intermediate inputB pointer */ + q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ + q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ + uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */ + + /* The algorithm implementation is based on the lengths of the inputs. */ + /* srcB is always made to slide across srcA. */ + /* So srcBLen is always considered as shorter or equal to srcALen */ + if (srcALen >= srcBLen) + { + /* Initialization of inputA pointer */ + pIn1 = pSrcA; + + /* Initialization of inputB pointer */ + pIn2 = pSrcB; + } + else + { + /* Initialization of inputA pointer */ + pIn1 = pSrcB; + + /* Initialization of inputB pointer */ + pIn2 = pSrcA; + + /* srcBLen is always considered as shorter or equal to srcALen */ + j = srcBLen; + srcBLen = srcALen; + srcALen = j; + } + + /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ + /* The function is internally + * divided into three stages according to the number of multiplications that has to be + * taken place between inputA samples and inputB samples. In the first stage of the + * algorithm, the multiplications increase by one for every iteration. + * In the second stage of the algorithm, srcBLen number of multiplications are done. + * In the third stage of the algorithm, the multiplications decrease by one + * for every iteration. */ + + /* The algorithm is implemented in three stages. + The loop counters of each stage is initiated here. */ + blockSize1 = srcBLen - 1U; + blockSize2 = srcALen - (srcBLen - 1U); + blockSize3 = blockSize1; + + /* -------------------------- + * Initializations of stage1 + * -------------------------*/ + + /* sum = x[0] * y[0] + * sum = x[0] * y[1] + x[1] * y[0] + * .... + * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] + */ + + /* In this stage the MAC operations are increased by 1 for every iteration. + The count variable holds the number of MAC operations performed */ + count = 1U; + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + py = pIn2; + + + /* ------------------------ + * Stage1 process + * ----------------------*/ + + /* For loop unrolling by 4, this stage is divided into two. */ + /* First part of this stage computes the MAC operations less than 4 */ + /* Second part of this stage computes the MAC operations greater than or equal to 4 */ + + /* The first part of the stage starts here */ + while ((count < 4U) && (blockSize1 > 0U)) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Loop over number of MAC operations between + * inputA samples and inputB samples */ + k = count; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum = __SMLAD(*px++, *py--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = pIn2 + count; + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* The second part of the stage starts here */ + /* The internal loop, over count, is unrolled by 4 */ + /* To, read the last two inputB samples using SIMD: + * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ + py = py - 1; + + while (blockSize1 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = count >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* Perform the multiply-accumulates */ + /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */ + sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); + /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */ + sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* For the next MAC operations, the pointer py is used without SIMD + * So, py is incremented by 1 */ + py = py + 1U; + + /* If the count is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = count % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum = __SMLAD(*px++, *py--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = pIn2 + (count - 1U); + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* -------------------------- + * Initializations of stage2 + * ------------------------*/ + + /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] + * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] + * .... + * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] + */ + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* count is the index by which the pointer pIn1 to be incremented */ + count = 0U; + + + /* -------------------- + * Stage2 process + * -------------------*/ + + /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. + * So, to loop unroll over blockSize2, + * srcBLen should be greater than or equal to 4 */ + if (srcBLen >= 4U) + { + /* Loop unroll over blockSize2, by 4 */ + blkCnt = blockSize2 >> 2U; + + while (blkCnt > 0U) + { + py = py - 1U; + + /* Set all accumulators to zero */ + acc0 = 0; + acc1 = 0; + acc2 = 0; + acc3 = 0; + + + /* read x[0], x[1] samples */ + x0 = *__SIMD32(px); + /* read x[1], x[2] samples */ + x1 = _SIMD32_OFFSET(px+1); + px+= 2U; + + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + do + { + /* Read the last two inputB samples using SIMD: + * y[srcBLen - 1] and y[srcBLen - 2] */ + c0 = *__SIMD32(py)--; + + /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ + acc0 = __SMLADX(x0, c0, acc0); + + /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ + acc1 = __SMLADX(x1, c0, acc1); + + /* Read x[2], x[3] */ + x2 = *__SIMD32(px); + + /* Read x[3], x[4] */ + x3 = _SIMD32_OFFSET(px+1); + + /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ + acc2 = __SMLADX(x2, c0, acc2); + + /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ + acc3 = __SMLADX(x3, c0, acc3); + + /* Read y[srcBLen - 3] and y[srcBLen - 4] */ + c0 = *__SIMD32(py)--; + + /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ + acc0 = __SMLADX(x2, c0, acc0); + + /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ + acc1 = __SMLADX(x3, c0, acc1); + + /* Read x[4], x[5] */ + x0 = _SIMD32_OFFSET(px+2); + + /* Read x[5], x[6] */ + x1 = _SIMD32_OFFSET(px+3); + px += 4U; + + /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ + acc2 = __SMLADX(x0, c0, acc2); + + /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ + acc3 = __SMLADX(x1, c0, acc3); + + } while (--k); + + /* For the next MAC operations, SIMD is not used + * So, the 16 bit pointer if inputB, py is updated */ + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + if (k == 1U) + { + /* Read y[srcBLen - 5] */ + c0 = *(py+1); + +#ifdef ARM_MATH_BIG_ENDIAN + + c0 = c0 << 16U; + +#else + + c0 = c0 & 0x0000FFFF; + +#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ + + /* Read x[7] */ + x3 = *__SIMD32(px); + px++; + + /* Perform the multiply-accumulates */ + acc0 = __SMLAD(x0, c0, acc0); + acc1 = __SMLAD(x1, c0, acc1); + acc2 = __SMLADX(x1, c0, acc2); + acc3 = __SMLADX(x3, c0, acc3); + } + + if (k == 2U) + { + /* Read y[srcBLen - 5], y[srcBLen - 6] */ + c0 = _SIMD32_OFFSET(py); + + /* Read x[7], x[8] */ + x3 = *__SIMD32(px); + + /* Read x[9] */ + x2 = _SIMD32_OFFSET(px+1); + px += 2U; + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x0, c0, acc0); + acc1 = __SMLADX(x1, c0, acc1); + acc2 = __SMLADX(x3, c0, acc2); + acc3 = __SMLADX(x2, c0, acc3); + } + + if (k == 3U) + { + /* Read y[srcBLen - 5], y[srcBLen - 6] */ + c0 = _SIMD32_OFFSET(py); + + /* Read x[7], x[8] */ + x3 = *__SIMD32(px); + + /* Read x[9] */ + x2 = _SIMD32_OFFSET(px+1); + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x0, c0, acc0); + acc1 = __SMLADX(x1, c0, acc1); + acc2 = __SMLADX(x3, c0, acc2); + acc3 = __SMLADX(x2, c0, acc3); + + /* Read y[srcBLen - 7] */ + c0 = *(py-1); +#ifdef ARM_MATH_BIG_ENDIAN + + c0 = c0 << 16U; +#else + + c0 = c0 & 0x0000FFFF; +#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ + + /* Read x[10] */ + x3 = _SIMD32_OFFSET(px+2); + px += 3U; + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x1, c0, acc0); + acc1 = __SMLAD(x2, c0, acc1); + acc2 = __SMLADX(x2, c0, acc2); + acc3 = __SMLADX(x3, c0, acc3); + } + + /* Store the results in the accumulators in the destination buffer. */ +#ifndef ARM_MATH_BIG_ENDIAN + + *__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16); + *__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16); + +#else + + *__SIMD32(pOut)++ = __PKHBT((acc1 >> 15), (acc0 >> 15), 16); + *__SIMD32(pOut)++ = __PKHBT((acc3 >> 15), (acc2 >> 15), 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Increment the pointer pIn1 index, count by 4 */ + count += 4U; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize2 % 0x4U; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Increment the pointer pIn1 index, count by 1 */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + else + { + /* If the srcBLen is not a multiple of 4, + * the blockSize2 loop cannot be unrolled by 4 */ + blkCnt = blockSize2; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* srcBLen number of MACS should be performed */ + k = srcBLen; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Increment the MAC count */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + + + /* -------------------------- + * Initializations of stage3 + * -------------------------*/ + + /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] + * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] + * .... + * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] + * sum += x[srcALen-1] * y[srcBLen-1] + */ + + /* In this stage the MAC operations are decreased by 1 for every iteration. + The blockSize3 variable holds the number of MAC operations performed */ + + /* Working pointer of inputA */ + pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); + px = pSrc1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + pIn2 = pSrc2 - 1U; + py = pIn2; + + /* ------------------- + * Stage3 process + * ------------------*/ + + /* For loop unrolling by 4, this stage is divided into two. */ + /* First part of this stage computes the MAC operations greater than 4 */ + /* Second part of this stage computes the MAC operations less than or equal to 4 */ + + /* The first part of the stage starts here */ + j = blockSize3 >> 2U; + + while ((j > 0U) && (blockSize3 > 0U)) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = blockSize3 >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied + * with y[srcBLen - 1], y[srcBLen - 2] respectively */ + sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); + /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied + * with y[srcBLen - 3], y[srcBLen - 4] respectively */ + sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* For the next MAC operations, the pointer py is used without SIMD + * So, py is incremented by 1 */ + py = py + 1U; + + /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = blockSize3 % 0x4U; + + while (k > 0U) + { + /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ + sum = __SMLAD(*px++, *py--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pIn2; + + /* Decrement the loop counter */ + blockSize3--; + + j--; + } + + /* The second part of the stage starts here */ + /* SIMD is not used for the next MAC operations, + * so pointer py is updated to read only one sample at a time */ + py = py + 1U; + + while (blockSize3 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = blockSize3; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + /* sum += x[srcALen-1] * y[srcBLen-1] */ + sum = __SMLAD(*px++, *py--, sum); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pSrc2; + + /* Decrement the loop counter */ + blockSize3--; + } + +#else + q15_t *pIn1; /* inputA pointer */ + q15_t *pIn2; /* inputB pointer */ + q15_t *pOut = pDst; /* output pointer */ + q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ + q15_t *px; /* Intermediate inputA pointer */ + q15_t *py; /* Intermediate inputB pointer */ + q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ + q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ + uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */ + q15_t a, b; + + /* The algorithm implementation is based on the lengths of the inputs. */ + /* srcB is always made to slide across srcA. */ + /* So srcBLen is always considered as shorter or equal to srcALen */ + if (srcALen >= srcBLen) + { + /* Initialization of inputA pointer */ + pIn1 = pSrcA; + + /* Initialization of inputB pointer */ + pIn2 = pSrcB; + } + else + { + /* Initialization of inputA pointer */ + pIn1 = pSrcB; + + /* Initialization of inputB pointer */ + pIn2 = pSrcA; + + /* srcBLen is always considered as shorter or equal to srcALen */ + j = srcBLen; + srcBLen = srcALen; + srcALen = j; + } + + /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ + /* The function is internally + * divided into three stages according to the number of multiplications that has to be + * taken place between inputA samples and inputB samples. In the first stage of the + * algorithm, the multiplications increase by one for every iteration. + * In the second stage of the algorithm, srcBLen number of multiplications are done. + * In the third stage of the algorithm, the multiplications decrease by one + * for every iteration. */ + + /* The algorithm is implemented in three stages. + The loop counters of each stage is initiated here. */ + blockSize1 = srcBLen - 1U; + blockSize2 = srcALen - (srcBLen - 1U); + blockSize3 = blockSize1; + + /* -------------------------- + * Initializations of stage1 + * -------------------------*/ + + /* sum = x[0] * y[0] + * sum = x[0] * y[1] + x[1] * y[0] + * .... + * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] + */ + + /* In this stage the MAC operations are increased by 1 for every iteration. + The count variable holds the number of MAC operations performed */ + count = 1U; + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + py = pIn2; + + + /* ------------------------ + * Stage1 process + * ----------------------*/ + + /* For loop unrolling by 4, this stage is divided into two. */ + /* First part of this stage computes the MAC operations less than 4 */ + /* Second part of this stage computes the MAC operations greater than or equal to 4 */ + + /* The first part of the stage starts here */ + while ((count < 4U) && (blockSize1 > 0U)) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Loop over number of MAC operations between + * inputA samples and inputB samples */ + k = count; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = pIn2 + count; + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* The second part of the stage starts here */ + /* The internal loop, over count, is unrolled by 4 */ + /* To, read the last two inputB samples using SIMD: + * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ + py = py - 1; + + while (blockSize1 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = count >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + py++; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* If the count is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = count % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = pIn2 + (count - 1U); + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* -------------------------- + * Initializations of stage2 + * ------------------------*/ + + /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] + * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] + * .... + * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] + */ + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* count is the index by which the pointer pIn1 to be incremented */ + count = 0U; + + + /* -------------------- + * Stage2 process + * -------------------*/ + + /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. + * So, to loop unroll over blockSize2, + * srcBLen should be greater than or equal to 4 */ + if (srcBLen >= 4U) + { + /* Loop unroll over blockSize2, by 4 */ + blkCnt = blockSize2 >> 2U; + + while (blkCnt > 0U) + { + py = py - 1U; + + /* Set all accumulators to zero */ + acc0 = 0; + acc1 = 0; + acc2 = 0; + acc3 = 0; + + /* read x[0], x[1] samples */ + a = *px++; + b = *px++; + +#ifndef ARM_MATH_BIG_ENDIAN + + x0 = __PKHBT(a, b, 16); + a = *px; + x1 = __PKHBT(b, a, 16); + +#else + + x0 = __PKHBT(b, a, 16); + a = *px; + x1 = __PKHBT(a, b, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + do + { + /* Read the last two inputB samples using SIMD: + * y[srcBLen - 1] and y[srcBLen - 2] */ + a = *py; + b = *(py+1); + py -= 2; + +#ifndef ARM_MATH_BIG_ENDIAN + + c0 = __PKHBT(a, b, 16); + +#else + + c0 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ + acc0 = __SMLADX(x0, c0, acc0); + + /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ + acc1 = __SMLADX(x1, c0, acc1); + + a = *px; + b = *(px + 1); + +#ifndef ARM_MATH_BIG_ENDIAN + + x2 = __PKHBT(a, b, 16); + a = *(px + 2); + x3 = __PKHBT(b, a, 16); + +#else + + x2 = __PKHBT(b, a, 16); + a = *(px + 2); + x3 = __PKHBT(a, b, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ + acc2 = __SMLADX(x2, c0, acc2); + + /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ + acc3 = __SMLADX(x3, c0, acc3); + + /* Read y[srcBLen - 3] and y[srcBLen - 4] */ + a = *py; + b = *(py+1); + py -= 2; + +#ifndef ARM_MATH_BIG_ENDIAN + + c0 = __PKHBT(a, b, 16); + +#else + + c0 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ + acc0 = __SMLADX(x2, c0, acc0); + + /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ + acc1 = __SMLADX(x3, c0, acc1); + + /* Read x[4], x[5], x[6] */ + a = *(px + 2); + b = *(px + 3); + +#ifndef ARM_MATH_BIG_ENDIAN + + x0 = __PKHBT(a, b, 16); + a = *(px + 4); + x1 = __PKHBT(b, a, 16); + +#else + + x0 = __PKHBT(b, a, 16); + a = *(px + 4); + x1 = __PKHBT(a, b, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + px += 4U; + + /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ + acc2 = __SMLADX(x0, c0, acc2); + + /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ + acc3 = __SMLADX(x1, c0, acc3); + + } while (--k); + + /* For the next MAC operations, SIMD is not used + * So, the 16 bit pointer if inputB, py is updated */ + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + if (k == 1U) + { + /* Read y[srcBLen - 5] */ + c0 = *(py+1); + +#ifdef ARM_MATH_BIG_ENDIAN + + c0 = c0 << 16U; + +#else + + c0 = c0 & 0x0000FFFF; + +#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ + + /* Read x[7] */ + a = *px; + b = *(px+1); + px++; + +#ifndef ARM_MATH_BIG_ENDIAN + + x3 = __PKHBT(a, b, 16); + +#else + + x3 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + + /* Perform the multiply-accumulates */ + acc0 = __SMLAD(x0, c0, acc0); + acc1 = __SMLAD(x1, c0, acc1); + acc2 = __SMLADX(x1, c0, acc2); + acc3 = __SMLADX(x3, c0, acc3); + } + + if (k == 2U) + { + /* Read y[srcBLen - 5], y[srcBLen - 6] */ + a = *py; + b = *(py+1); + +#ifndef ARM_MATH_BIG_ENDIAN + + c0 = __PKHBT(a, b, 16); + +#else + + c0 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Read x[7], x[8], x[9] */ + a = *px; + b = *(px + 1); + +#ifndef ARM_MATH_BIG_ENDIAN + + x3 = __PKHBT(a, b, 16); + a = *(px + 2); + x2 = __PKHBT(b, a, 16); + +#else + + x3 = __PKHBT(b, a, 16); + a = *(px + 2); + x2 = __PKHBT(a, b, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + px += 2U; + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x0, c0, acc0); + acc1 = __SMLADX(x1, c0, acc1); + acc2 = __SMLADX(x3, c0, acc2); + acc3 = __SMLADX(x2, c0, acc3); + } + + if (k == 3U) + { + /* Read y[srcBLen - 5], y[srcBLen - 6] */ + a = *py; + b = *(py+1); + +#ifndef ARM_MATH_BIG_ENDIAN + + c0 = __PKHBT(a, b, 16); + +#else + + c0 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Read x[7], x[8], x[9] */ + a = *px; + b = *(px + 1); + +#ifndef ARM_MATH_BIG_ENDIAN + + x3 = __PKHBT(a, b, 16); + a = *(px + 2); + x2 = __PKHBT(b, a, 16); + +#else + + x3 = __PKHBT(b, a, 16); + a = *(px + 2); + x2 = __PKHBT(a, b, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x0, c0, acc0); + acc1 = __SMLADX(x1, c0, acc1); + acc2 = __SMLADX(x3, c0, acc2); + acc3 = __SMLADX(x2, c0, acc3); + + /* Read y[srcBLen - 7] */ + c0 = *(py-1); +#ifdef ARM_MATH_BIG_ENDIAN + + c0 = c0 << 16U; +#else + + c0 = c0 & 0x0000FFFF; +#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ + + /* Read x[10] */ + a = *(px+2); + b = *(px+3); + +#ifndef ARM_MATH_BIG_ENDIAN + + x3 = __PKHBT(a, b, 16); + +#else + + x3 = __PKHBT(b, a, 16);; + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + px += 3U; + + /* Perform the multiply-accumulates */ + acc0 = __SMLADX(x1, c0, acc0); + acc1 = __SMLAD(x2, c0, acc1); + acc2 = __SMLADX(x2, c0, acc2); + acc3 = __SMLADX(x3, c0, acc3); + } + + /* Store the results in the accumulators in the destination buffer. */ + *pOut++ = (q15_t)(acc0 >> 15); + *pOut++ = (q15_t)(acc1 >> 15); + *pOut++ = (q15_t)(acc2 >> 15); + *pOut++ = (q15_t)(acc3 >> 15); + + /* Increment the pointer pIn1 index, count by 4 */ + count += 4U; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize2 % 0x4U; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Increment the pointer pIn1 index, count by 1 */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + else + { + /* If the srcBLen is not a multiple of 4, + * the blockSize2 loop cannot be unrolled by 4 */ + blkCnt = blockSize2; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* srcBLen number of MACS should be performed */ + k = srcBLen; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Increment the MAC count */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = pIn1 + count; + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + + + /* -------------------------- + * Initializations of stage3 + * -------------------------*/ + + /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] + * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] + * .... + * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] + * sum += x[srcALen-1] * y[srcBLen-1] + */ + + /* In this stage the MAC operations are decreased by 1 for every iteration. + The blockSize3 variable holds the number of MAC operations performed */ + + /* Working pointer of inputA */ + pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); + px = pSrc1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + pIn2 = pSrc2 - 1U; + py = pIn2; + + /* ------------------- + * Stage3 process + * ------------------*/ + + /* For loop unrolling by 4, this stage is divided into two. */ + /* First part of this stage computes the MAC operations greater than 4 */ + /* Second part of this stage computes the MAC operations less than or equal to 4 */ + + /* The first part of the stage starts here */ + j = blockSize3 >> 2U; + + while ((j > 0U) && (blockSize3 > 0U)) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = blockSize3 >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + py++; + + while (k > 0U) + { + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + sum += ((q31_t) * px++ * *py--); + /* Decrement the loop counter */ + k--; + } + + /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = blockSize3 % 0x4U; + + while (k > 0U) + { + /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pIn2; + + /* Decrement the loop counter */ + blockSize3--; + + j--; + } + + /* The second part of the stage starts here */ + /* SIMD is not used for the next MAC operations, + * so pointer py is updated to read only one sample at a time */ + py = py + 1U; + + while (blockSize3 > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = blockSize3; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + /* sum += x[srcALen-1] * y[srcBLen-1] */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q15_t) (sum >> 15); + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pSrc2; + + /* Decrement the loop counter */ + blockSize3--; + } + +#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ +} + +/** + * @} end of Conv group + */ -- cgit