From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../arm_biquad_cascade_df1_fast_q31.c | 292 +++++++++++++++++++++ 1 file changed, 292 insertions(+) create mode 100644 fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c') diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c new file mode 100644 index 0000000..5e41faa --- /dev/null +++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c @@ -0,0 +1,292 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_biquad_cascade_df1_fast_q31.c + * Description: Processing function for the Q31 Fast Biquad cascade DirectFormI(DF1) filter + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupFilters + */ + +/** + * @addtogroup BiquadCascadeDF1 + * @{ + */ + +/** + * @details + * + * @param[in] *S points to an instance of the Q31 Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process per call. + * @return none. + * + * Scaling and Overflow Behavior: + * \par + * This function is optimized for speed at the expense of fixed-point precision and overflow protection. + * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. + * These intermediate results are added to a 2.30 accumulator. + * Finally, the accumulator is saturated and converted to a 1.31 result. + * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. + * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function + * arm_biquad_cascade_df1_init_q31() to initialize filter structure. + * + * \par + * Refer to the function arm_biquad_cascade_df1_q31() for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure. + * Use the function arm_biquad_cascade_df1_init_q31() to initialize the filter structure. + */ + +void arm_biquad_cascade_df1_fast_q31( + const arm_biquad_casd_df1_inst_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize) +{ + q31_t acc = 0; /* accumulator */ + q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ + q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ + q31_t *pIn = pSrc; /* input pointer initialization */ + q31_t *pOut = pDst; /* output pointer initialization */ + q31_t *pState = S->pState; /* pState pointer initialization */ + q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ + q31_t Xn; /* temporary input */ + int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */ + uint32_t sample, stage = S->numStages; /* loop counters */ + + + do + { + /* Reading the coefficients */ + b0 = *pCoeffs++; + b1 = *pCoeffs++; + b2 = *pCoeffs++; + a1 = *pCoeffs++; + a2 = *pCoeffs++; + + /* Reading the state values */ + Xn1 = pState[0]; + Xn2 = pState[1]; + Yn1 = pState[2]; + Yn2 = pState[3]; + + /* Apply loop unrolling and compute 4 output values simultaneously. */ + /* The variables acc ... acc3 hold output values that are being computed: + * + * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] + */ + + sample = blockSize >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (sample > 0U) + { + /* Read the input */ + Xn = *pIn; + + /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ + /* acc = b0 * x[n] */ + /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/ + mult_32x32_keep32_R(acc, b1, Xn1); + /* acc += b1 * x[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b0, Xn); + /* acc += b[2] * x[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b2, Xn2); + /* acc += a1 * y[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a1, Yn1); + /* acc += a2 * y[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a2, Yn2); + + /* The result is converted to 1.31 , Yn2 variable is reused */ + Yn2 = acc << shift; + + /* Read the second input */ + Xn2 = *(pIn + 1U); + + /* Store the output in the destination buffer. */ + *pOut = Yn2; + + /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ + /* acc = b0 * x[n] */ + /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/ + mult_32x32_keep32_R(acc, b0, Xn2); + /* acc += b1 * x[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b1, Xn); + /* acc += b[2] * x[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b2, Xn1); + /* acc += a1 * y[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a1, Yn2); + /* acc += a2 * y[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a2, Yn1); + + /* The result is converted to 1.31, Yn1 variable is reused */ + Yn1 = acc << shift; + + /* Read the third input */ + Xn1 = *(pIn + 2U); + + /* Store the output in the destination buffer. */ + *(pOut + 1U) = Yn1; + + /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ + /* acc = b0 * x[n] */ + /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/ + mult_32x32_keep32_R(acc, b0, Xn1); + /* acc += b1 * x[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b1, Xn2); + /* acc += b[2] * x[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b2, Xn); + /* acc += a1 * y[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a1, Yn1); + /* acc += a2 * y[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a2, Yn2); + + /* The result is converted to 1.31, Yn2 variable is reused */ + Yn2 = acc << shift; + + /* Read the forth input */ + Xn = *(pIn + 3U); + + /* Store the output in the destination buffer. */ + *(pOut + 2U) = Yn2; + pIn += 4U; + + /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ + /* acc = b0 * x[n] */ + /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ + mult_32x32_keep32_R(acc, b0, Xn); + /* acc += b1 * x[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b1, Xn1); + /* acc += b[2] * x[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b2, Xn2); + /* acc += a1 * y[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a1, Yn2); + /* acc += a2 * y[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a2, Yn1); + + /* Every time after the output is computed state should be updated. */ + /* The states should be updated as: */ + /* Xn2 = Xn1 */ + Xn2 = Xn1; + + /* The result is converted to 1.31, Yn1 variable is reused */ + Yn1 = acc << shift; + + /* Xn1 = Xn */ + Xn1 = Xn; + + /* Store the output in the destination buffer. */ + *(pOut + 3U) = Yn1; + pOut += 4U; + + /* decrement the loop counter */ + sample--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + sample = (blockSize & 0x3U); + + while (sample > 0U) + { + /* Read the input */ + Xn = *pIn++; + + /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ + /* acc = b0 * x[n] */ + /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ + mult_32x32_keep32_R(acc, b0, Xn); + /* acc += b1 * x[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b1, Xn1); + /* acc += b[2] * x[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, b2, Xn2); + /* acc += a1 * y[n-1] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a1, Yn1); + /* acc += a2 * y[n-2] */ + /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ + multAcc_32x32_keep32_R(acc, a2, Yn2); + + /* The result is converted to 1.31 */ + acc = acc << shift; + + /* Every time after the output is computed state should be updated. */ + /* The states should be updated as: */ + /* Xn2 = Xn1 */ + /* Xn1 = Xn */ + /* Yn2 = Yn1 */ + /* Yn1 = acc */ + Xn2 = Xn1; + Xn1 = Xn; + Yn2 = Yn1; + Yn1 = acc; + + /* Store the output in the destination buffer. */ + *pOut++ = acc; + + /* decrement the loop counter */ + sample--; + } + + /* The first stage goes from the input buffer to the output buffer. */ + /* Subsequent stages occur in-place in the output buffer */ + pIn = pDst; + + /* Reset to destination pointer */ + pOut = pDst; + + /* Store the updated state variables back into the pState array */ + *pState++ = Xn1; + *pState++ = Xn2; + *pState++ = Yn1; + *pState++ = Yn2; + + } while (--stage); +} + +/** + * @} end of BiquadCascadeDF1 group + */ -- cgit