From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../arm_linear_interp_example_f32.c | 204 +++++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c') diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c new file mode 100644 index 0000000..87908ed --- /dev/null +++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c @@ -0,0 +1,204 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010-2012 ARM Limited. All rights reserved. +* +* $Date: 17. January 2013 +* $Revision: V1.4.0 +* +* Project: CMSIS DSP Library +* Title: arm_linear_interp_example_f32.c +* +* Description: Example code demonstrating usage of sin function +* and uses linear interpolation to get higher precision +* +* Target Processor: Cortex-M4/Cortex-M3 +* +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions +* are met: +* - Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* - Redistributions in binary form must reproduce the above copyright +* notice, this list of conditions and the following disclaimer in +* the documentation and/or other materials provided with the +* distribution. +* - Neither the name of ARM LIMITED nor the names of its contributors +* may be used to endorse or promote products derived from this +* software without specific prior written permission. +* +* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +* POSSIBILITY OF SUCH DAMAGE. + * -------------------------------------------------------------------- */ + + +/** + * @ingroup groupExamples + */ + +/** + * @defgroup LinearInterpExample Linear Interpolate Example + * + * CMSIS DSP Software Library -- Linear Interpolate Example + * + * Description + * This example demonstrates usage of linear interpolate modules and fast math modules. + * Method 1 uses fast math sine function to calculate sine values using cubic interpolation and method 2 uses + * linear interpolation function and results are compared to reference output. + * Example shows linear interpolation function can be used to get higher precision compared to fast math sin calculation. + * + * \par Block Diagram: + * \par + * \image html linearInterpExampleMethod1.gif "Method 1: Sine caluclation using fast math" + * \par + * \image html linearInterpExampleMethod2.gif "Method 2: Sine caluclation using interpolation function" + * + * \par Variables Description: + * \par + * \li \c testInputSin_f32 points to the input values for sine calculation + * \li \c testRefSinOutput32_f32 points to the reference values caculated from sin() matlab function + * \li \c testOutput points to output buffer calculation from cubic interpolation + * \li \c testLinIntOutput points to output buffer calculation from linear interpolation + * \li \c snr1 Signal to noise ratio for reference and cubic interpolation output + * \li \c snr2 Signal to noise ratio for reference and linear interpolation output + * + * \par CMSIS DSP Software Library Functions Used: + * \par + * - arm_sin_f32() + * - arm_linear_interp_f32() + * + * Refer + * \link arm_linear_interp_example_f32.c \endlink + * + */ + + +/** \example arm_linear_interp_example_f32.c + */ + +#include "arm_math.h" +#include "math_helper.h" + +#define SNR_THRESHOLD 90 +#define TEST_LENGTH_SAMPLES 10 +#define XSPACING (0.00005f) + +/* ---------------------------------------------------------------------- +* Test input data for F32 SIN function +* Generated by the MATLAB rand() function +* randn('state', 0) +* xi = (((1/4.18318581819710)* randn(blockSize, 1) * 2* pi)); +* --------------------------------------------------------------------*/ +float32_t testInputSin_f32[TEST_LENGTH_SAMPLES] = +{ + -0.649716504673081170, -2.501723745497831200, + 0.188250329003310100, 0.432092748487532540, + -1.722010988459680800, 1.788766476323060600, + 1.786136060975809500, -0.056525543169408797, + 0.491596272728153760, 0.262309671126153390 +}; + +/*------------------------------------------------------------------------------ +* Reference out of SIN F32 function for Block Size = 10 +* Calculated from sin(testInputSin_f32) +*------------------------------------------------------------------------------*/ +float32_t testRefSinOutput32_f32[TEST_LENGTH_SAMPLES] = +{ + -0.604960695383043530, -0.597090287967934840, + 0.187140422442966500, 0.418772124875992690, + -0.988588831792106880, 0.976338412038794010, + 0.976903856413481100, -0.056495446835214236, + 0.472033731854734240, 0.259311907228582830 +}; + +/*------------------------------------------------------------------------------ +* Method 1: Test out Buffer Calculated from Cubic Interpolation +*------------------------------------------------------------------------------*/ +float32_t testOutput[TEST_LENGTH_SAMPLES]; + +/*------------------------------------------------------------------------------ +* Method 2: Test out buffer Calculated from Linear Interpolation +*------------------------------------------------------------------------------*/ +float32_t testLinIntOutput[TEST_LENGTH_SAMPLES]; + +/*------------------------------------------------------------------------------ +* External table used for linear interpolation +*------------------------------------------------------------------------------*/ +extern float arm_linear_interep_table[188495]; + +/* ---------------------------------------------------------------------- +* Global Variables for caluclating SNR's for Method1 & Method 2 +* ------------------------------------------------------------------- */ +float32_t snr1; +float32_t snr2; + +/* ---------------------------------------------------------------------------- +* Calculation of Sine values from Cubic Interpolation and Linear interpolation +* ---------------------------------------------------------------------------- */ +int32_t main(void) +{ + uint32_t i; + arm_status status; + + arm_linear_interp_instance_f32 S = {188495, -3.141592653589793238, XSPACING, &arm_linear_interep_table[0]}; + + /*------------------------------------------------------------------------------ + * Method 1: Test out Calculated from Cubic Interpolation + *------------------------------------------------------------------------------*/ + for(i=0; i< TEST_LENGTH_SAMPLES; i++) + { + testOutput[i] = arm_sin_f32(testInputSin_f32[i]); + } + + /*------------------------------------------------------------------------------ + * Method 2: Test out Calculated from Cubic Interpolation and Linear interpolation + *------------------------------------------------------------------------------*/ + + for(i=0; i< TEST_LENGTH_SAMPLES; i++) + { + testLinIntOutput[i] = arm_linear_interp_f32(&S, testInputSin_f32[i]); + } + + /*------------------------------------------------------------------------------ + * SNR calculation for method 1 + *------------------------------------------------------------------------------*/ + snr1 = arm_snr_f32(testRefSinOutput32_f32, testOutput, 2); + + /*------------------------------------------------------------------------------ + * SNR calculation for method 2 + *------------------------------------------------------------------------------*/ + snr2 = arm_snr_f32(testRefSinOutput32_f32, testLinIntOutput, 2); + + /*------------------------------------------------------------------------------ + * Initialise status depending on SNR calculations + *------------------------------------------------------------------------------*/ + if ( snr2 > snr1) + { + status = ARM_MATH_SUCCESS; + } + else + { + status = ARM_MATH_TEST_FAILURE; + } + + /* ---------------------------------------------------------------------- + ** Loop here if the signals fail the PASS check. + ** This denotes a test failure + ** ------------------------------------------------------------------- */ + if ( status != ARM_MATH_SUCCESS) + { + while (1); + } + + while (1); /* main function does not return */ +} + + /** \endlink */ -- cgit