From a81fc41c3eb99e8fc52aa734ee63e13c937aab81 Mon Sep 17 00:00:00 2001 From: JanHenrik Date: Sun, 19 Jan 2020 00:56:37 +0100 Subject: added blink example --- .../ActivationFunctions/arm_nn_activations_q15.c | 101 +++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 Blink/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c (limited to 'Blink/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c') diff --git a/Blink/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c b/Blink/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c new file mode 100644 index 0000000..fd447e5 --- /dev/null +++ b/Blink/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c @@ -0,0 +1,101 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_activations_q15.c + * Description: Q15 neural network activation function using direct table look-up + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_common_tables.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + + /** + * @brief Q15 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * @return none. + * + * @details + * + * This is the direct table look-up approach. + * + * Assume here the integer part of the fixed-point is <= 3. + * More than 3 just not making much sense, makes no difference with + * saturation followed by any of these activation functions. + */ + +void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type) +{ + uint16_t i = size; + q15_t *pIn = data; + q15_t *pOut = data; + uint16_t shift_size = 8 + 3 - int_width; + uint32_t bit_mask = 0x7FF >> int_width; + uint32_t full_frac = bit_mask + 1; + const q15_t *lookup_table; + + switch (type) + { + case ARM_SIGMOID: + lookup_table = sigmoidTable_q15; + break; + case ARM_TANH: + default: + lookup_table = tanhTable_q15; + break; + } + + while (i) + { + q15_t out; + q15_t in = *pIn++; + q15_t frac = (uint32_t) in & bit_mask; + q15_t value = lookup_table[__USAT(in >> shift_size, 8)]; + q15_t value2 = lookup_table[__USAT(1 + (in >> shift_size), 8)]; + + /* doing the interpolation here for better accuracy */ + out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size; + + *pOut++ = out; + i--; + } + +} + +/** + * @} end of Acti group + */ -- cgit