From 2628932a40d769d8d0180ba6fed1e7b9b2718982 Mon Sep 17 00:00:00 2001
From: jaseg <git-bigdata-wsl-arch@jaseg.de>
Date: Sun, 3 May 2020 19:53:02 +0200
Subject: minkbd: repo restructure

---
 Blink/Drivers/CMSIS/NN/Include/arm_nn_tables.h     |   59 --
 Blink/Drivers/CMSIS/NN/Include/arm_nnfunctions.h   | 1010 --------------------
 .../CMSIS/NN/Include/arm_nnsupportfunctions.h      |  202 ----
 3 files changed, 1271 deletions(-)
 delete mode 100644 Blink/Drivers/CMSIS/NN/Include/arm_nn_tables.h
 delete mode 100644 Blink/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
 delete mode 100644 Blink/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h

(limited to 'Blink/Drivers/CMSIS/NN/Include')

diff --git a/Blink/Drivers/CMSIS/NN/Include/arm_nn_tables.h b/Blink/Drivers/CMSIS/NN/Include/arm_nn_tables.h
deleted file mode 100644
index 9357424..0000000
--- a/Blink/Drivers/CMSIS/NN/Include/arm_nn_tables.h
+++ /dev/null
@@ -1,59 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project:      CMSIS NN Library
- * Title:        arm_nn_tables.h
- * Description:  Extern declaration for NN tables
- *
- * $Date:        17. January 2018
- * $Revision:    V.1.0.0
- *
- * Target Processor:  Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef _ARM_NN_TABLES_H
-#define _ARM_NN_TABLES_H
-
-#include "arm_math.h"
-
-/**
-* @brief tables for various activation functions
-*
-*/
-
-extern const q15_t sigmoidTable_q15[256];
-extern const q7_t sigmoidTable_q7[256];
-
-extern const q7_t tanhTable_q7[256];
-extern const q15_t tanhTable_q15[256];
-
-  /**
-   * @brief 2-way tables for various activation functions
-   *
-   * 2-way table, H table for value larger than 1/4
-   * L table for value smaller than 1/4, H table for remaining
-   * We have this only for the q15_t version. It does not make
-   * sense to have it for q7_t type
-   */
-extern const q15_t sigmoidHTable_q15[192];
-extern const q15_t sigmoidLTable_q15[128];
-
-extern const q15_t sigmoidLTable_q15[128];
-extern const q15_t sigmoidHTable_q15[192];
-
-#endif                          /*  ARM_NN_TABLES_H */
diff --git a/Blink/Drivers/CMSIS/NN/Include/arm_nnfunctions.h b/Blink/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
deleted file mode 100644
index 96c59c2..0000000
--- a/Blink/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
+++ /dev/null
@@ -1,1010 +0,0 @@
-/*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/* ----------------------------------------------------------------------
- * Project:      CMSIS NN Library
- * Title:        arm_nnfunctions.h
- * Description:  Public header file for CMSIS NN Library
- *
- * $Date:        13. July 2018
- * $Revision:    V.1.0.0
- *
- * Target Processor:  Cortex-M cores
- * -------------------------------------------------------------------- */
-
-/**
-   \mainpage CMSIS NN Software Library
-   *
-   * Introduction
-   * ------------
-   *
-   * This user manual describes the CMSIS NN software library,
-   * a collection of efficient neural network kernels developed to maximize the 
-   * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
-   *
-   * The library is divided into a number of functions each covering a specific category:
-   * - Neural Network Convolution Functions
-   * - Neural Network Activation Functions
-   * - Fully-connected Layer Functions
-   * - Neural Network Pooling Functions
-   * - Softmax Functions
-   * - Neural Network Support Functions
-   *
-   * The library has separate functions for operating on different weight and activation data
-   * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
-   * kernels are included in the function description. The implementation details are also 
-   * described in this paper [1]. 
-   *
-   * Block Diagram
-   * --------
-   * \image html CMSIS-NN-OVERVIEW.PNG
-   *
-   * Examples
-   * --------
-   *
-   * The library ships with a number of examples which demonstrate how to use the library functions.
-   *
-   * Pre-processor Macros
-   * ------------
-   *
-   * Each library project have differant pre-processor macros.
-   *
-   * - ARM_MATH_DSP:
-   *
-   * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
-   *
-   * - ARM_MATH_BIG_ENDIAN:
-   *
-   * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
-   *
-   * - ARM_NN_TRUNCATE:
-   *
-   * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
-   *
-   * Copyright Notice
-   * ------------
-   *
-   * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
-   *
-   * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
-   */
-
-/**
- * @defgroup groupNN Neural Network Functions
- * These functions perform basic operations for neural network layers. 
- */
-
-#ifndef _ARM_NNFUNCTIONS_H
-#define _ARM_NNFUNCTIONS_H
-
-#include "arm_nnsupportfunctions.h"
-#include "arm_nn_tables.h"
-
-#define USE_INTRINSIC
-
-//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
-
-#ifdef __cplusplus
-extern    "C"
-{
-#endif
-
-/**
- * @defgroup NNConv Neural Network Convolution Functions
- *
- * Perform convolution layer
- *
- * The convolution is implemented in 2 steps: im2col and GEMM
- *
- * im2col is a process of converting each patch of image data into 
- * a column. After im2col, the convolution is computed as matrix-matrix
- * multiplication.
- * 
- * To reduce the memory footprint, the im2col is performed partially.
- * Each iteration, only a few column (i.e., patches) are generated and 
- * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
- *
- */
-
-  /**
-   * @brief Basic Q7 convolution function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
-   *
-   */
-
-    arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
-                                         const uint16_t dim_im_in,
-                                         const uint16_t ch_im_in,
-                                         const q7_t * wt,
-                                         const uint16_t ch_im_out,
-                                         const uint16_t dim_kernel,
-                                         const uint16_t padding,
-                                         const uint16_t stride,
-                                         const q7_t * bias,
-                                         const uint16_t bias_shift,
-                                         const uint16_t out_shift,
-                                         q7_t * Im_out, 
-                                         const uint16_t dim_im_out, 
-                                         q15_t * bufferA, 
-                                         q7_t * bufferB);
-
-  /**
-   * @brief Basic Q7 convolution function (non-sqaure shape)
-   * @param[in]       Im_in        pointer to input tensor
-   * @param[in]       dim_im_in_x  input tensor dimention x
-   * @param[in]       dim_im_in_y  input tensor dimention y
-   * @param[in]       ch_im_in     number of input tensor channels
-   * @param[in]       wt           pointer to kernel weights
-   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel_x filter kernel size x
-   * @param[in]       dim_kernel_y filter kernel size y
-   * @param[in]       padding_x    padding size x
-   * @param[in]       padding_y    padding size y
-   * @param[in]       stride_x     convolution stride x
-   * @param[in]       stride_y     convolution stride y
-   * @param[in]       bias         pointer to bias
-   * @param[in]       bias_shift   amount of left-shift for bias
-   * @param[in]       out_shift    amount of right-shift for output
-   * @param[in,out]   Im_out       pointer to output tensor
-   * @param[in]       dim_im_out_x output tensor dimension x
-   * @param[in]       dim_im_out_y output tensor dimension y
-   * @param[in,out]   bufferA      pointer to buffer space for input
-   * @param[in,out]   bufferB      pointer to buffer space for output
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
-   */
-
-    arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
-                                                  const uint16_t dim_im_in_x,
-                                                  const uint16_t dim_im_in_y,
-                                                  const uint16_t ch_im_in,
-                                                  const q7_t * wt,
-                                                  const uint16_t ch_im_out,
-                                                  const uint16_t dim_kernel_x,
-                                                  const uint16_t dim_kernel_y,
-                                                  const uint16_t padding_x,
-                                                  const uint16_t padding_y,
-                                                  const uint16_t stride_x,
-                                                  const uint16_t stride_y,
-                                                  const q7_t * bias,
-                                                  const uint16_t bias_shift,
-                                                  const uint16_t out_shift,
-                                                  q7_t * Im_out,
-                                                  const uint16_t dim_im_out_x,
-                                                  const uint16_t dim_im_out_y,
-                                                  q15_t * bufferA,
-                                                  q7_t * bufferB);
-
-  /**
-   * @brief Basic Q15 convolution function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
-   *
-   */
-
-    arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
-                                          const uint16_t dim_im_in,
-                                          const uint16_t ch_im_in,
-                                          const q15_t * wt,
-                                          const uint16_t ch_im_out,
-                                          const uint16_t dim_kernel,
-                                          const uint16_t padding,
-                                          const uint16_t stride,
-                                          const q15_t * bias,
-                                          const uint16_t bias_shift,
-                                          const uint16_t out_shift,
-                                          q15_t * Im_out, 
-                                          const uint16_t dim_im_out, 
-                                          q15_t * bufferA, 
-                                          q7_t * bufferB);
-
-  /**
-   * @brief Fast Q7 convolution function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 4
-   *   ch_im_out is multiple of 2
-   */
-
-    arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
-                                        const uint16_t dim_im_in,
-                                        const uint16_t ch_im_in,
-                                        const q7_t * wt,
-                                        const uint16_t ch_im_out,
-                                        const uint16_t dim_kernel,
-                                        const uint16_t padding,
-                                        const uint16_t stride,
-                                        const q7_t * bias,
-                                        const uint16_t bias_shift,
-                                        const uint16_t out_shift,
-                                        q7_t * Im_out, 
-                                        const uint16_t dim_im_out, 
-                                        q15_t * bufferA, 
-                                        q7_t * bufferB);
-
-  /**
-   * @brief Fast Q7 convolution function (non-sqaure shape)
-   * @param[in]       Im_in        pointer to input tensor
-   * @param[in]       dim_im_in_x  input tensor dimention x
-   * @param[in]       dim_im_in_y  input tensor dimention y
-   * @param[in]       ch_im_in     number of input tensor channels
-   * @param[in]       wt           pointer to kernel weights
-   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel_x filter kernel size x
-   * @param[in]       dim_kernel_y filter kernel size y
-   * @param[in]       padding_x    padding size x
-   * @param[in]       padding_y    padding size y
-   * @param[in]       stride_x     convolution stride x
-   * @param[in]       stride_y     convolution stride y
-   * @param[in]       bias         pointer to bias
-   * @param[in]       bias_shift   amount of left-shift for bias
-   * @param[in]       out_shift    amount of right-shift for output
-   * @param[in,out]   Im_out       pointer to output tensor
-   * @param[in]       dim_im_out_x output tensor dimension x
-   * @param[in]       dim_im_out_y output tensor dimension y
-   * @param[in,out]   bufferA      pointer to buffer space for input 
-   * @param[in,out]   bufferB      pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 4
-   *   ch_im_out is multiple of 2
-   */
-
-    arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
-                                                  const uint16_t dim_im_in_x,
-                                                  const uint16_t dim_im_in_y,
-                                                  const uint16_t ch_im_in,
-                                                  const q7_t * wt,
-                                                  const uint16_t ch_im_out,
-                                                  const uint16_t dim_kernel_x,
-                                                  const uint16_t dim_kernel_y,
-                                                  const uint16_t padding_x,
-                                                  const uint16_t padding_y,
-                                                  const uint16_t stride_x,
-                                                  const uint16_t stride_y,
-                                                  const q7_t * bias,
-                                                  const uint16_t bias_shift,
-                                                  const uint16_t out_shift,
-                                                  q7_t * Im_out,
-                                                  const uint16_t dim_im_out_x,
-                                                  const uint16_t dim_im_out_y,
-                                                  q15_t * bufferA,
-                                                  q7_t * bufferB);
-
-  /**
-   * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
-   * @param[in]       Im_in        pointer to input tensor
-   * @param[in]       dim_im_in_x  input tensor dimention x
-   * @param[in]       dim_im_in_y  input tensor dimention y
-   * @param[in]       ch_im_in     number of input tensor channels
-   * @param[in]       wt           pointer to kernel weights
-   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel_x filter kernel size x
-   * @param[in]       dim_kernel_y filter kernel size y
-   * @param[in]       padding_x    padding size x
-   * @param[in]       padding_y    padding size y
-   * @param[in]       stride_x     convolution stride x
-   * @param[in]       stride_y     convolution stride y
-   * @param[in]       bias         pointer to bias
-   * @param[in]       bias_shift   amount of left-shift for bias
-   * @param[in]       out_shift    amount of right-shift for output
-   * @param[in,out]   Im_out       pointer to output tensor
-   * @param[in]       dim_im_out_x output tensor dimension x
-   * @param[in]       dim_im_out_y output tensor dimension y
-   * @param[in,out]   bufferA      pointer to buffer space for input 
-   * @param[in,out]   bufferB      pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
-   * and dim_kernel_y=1). It can be used for
-   * second half of MobileNets after depthwise separable convolution.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 4
-   *   ch_im_out is multiple of 2
-   */
-    arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
-                                                      const uint16_t dim_im_in_x,
-                                                      const uint16_t dim_im_in_y,
-                                                      const uint16_t ch_im_in,
-                                                      const q7_t * wt,
-                                                      const uint16_t ch_im_out,
-                                                      const uint16_t dim_kernel_x,
-                                                      const uint16_t dim_kernel_y,
-                                                      const uint16_t padding_x,
-                                                      const uint16_t padding_y,
-                                                      const uint16_t stride_x,
-                                                      const uint16_t stride_y,
-                                                      const q7_t * bias,
-                                                      const uint16_t bias_shift,
-                                                      const uint16_t out_shift,
-                                                      q7_t * Im_out,
-                                                      const uint16_t dim_im_out_x,
-                                                      const uint16_t dim_im_out_y,
-                                                      q15_t * bufferA,
-                                                      q7_t * bufferB);
-
-  /**
-   * @brief Q7 version of convolution for RGB image
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This kernel is written exclusively for convolution with ch_im_in
-   * equals 3. This applies on the first layer of CNNs which has input
-   * image with RGB format.
-   */
-
-    arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
-                                       const uint16_t dim_im_in,
-                                       const uint16_t ch_im_in,
-                                       const q7_t * wt,
-                                       const uint16_t ch_im_out,
-                                       const uint16_t dim_kernel,
-                                       const uint16_t padding,
-                                       const uint16_t stride,
-                                       const q7_t * bias,
-                                       const uint16_t bias_shift,
-                                       const uint16_t out_shift,
-                                       q7_t * Im_out, 
-                                       const uint16_t dim_im_out, 
-                                       q15_t * bufferA, 
-                                       q7_t * bufferB);
-
-  /**
-   * @brief Fast Q15 convolution function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 2
-   *   ch_im_out is multiple of 2
-   */
-
-    arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
-                                         const uint16_t dim_im_in,
-                                         const uint16_t ch_im_in,
-                                         const q15_t * wt,
-                                         const uint16_t ch_im_out,
-                                         const uint16_t dim_kernel,
-                                         const uint16_t padding,
-                                         const uint16_t stride,
-                                         const q15_t * bias,
-                                         const uint16_t bias_shift,
-                                         const uint16_t out_shift,
-                                         q15_t * Im_out, 
-                                         const uint16_t dim_im_out, 
-                                         q15_t * bufferA, 
-                                         q7_t * bufferB);
-
-  /**
-   * @brief Fast Q15 convolution function (non-sqaure shape)
-   * @param[in]       Im_in        pointer to input tensor
-   * @param[in]       dim_im_in_x  input tensor dimention x
-   * @param[in]       dim_im_in_y  input tensor dimention y
-   * @param[in]       ch_im_in     number of input tensor channels
-   * @param[in]       wt           pointer to kernel weights
-   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel_x filter kernel size x
-   * @param[in]       dim_kernel_y filter kernel size y
-   * @param[in]       padding_x    padding size x
-   * @param[in]       padding_y    padding size y
-   * @param[in]       stride_x     convolution stride x
-   * @param[in]       stride_y     convolution stride y
-   * @param[in]       bias         pointer to bias
-   * @param[in]       bias_shift   amount of left-shift for bias
-   * @param[in]       out_shift    amount of right-shift for output
-   * @param[in,out]   Im_out       pointer to output tensor
-   * @param[in]       dim_im_out_x output tensor dimension x
-   * @param[in]       dim_im_out_y output tensor dimension y
-   * @param[in,out]   bufferA      pointer to buffer space for input 
-   * @param[in,out]   bufferB      pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * @details
-   *
-   * <b>Buffer size:</b>
-   *
-   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
-   *
-   * bufferB size: 0
-   *
-   * <b>Input dimension constraints:</b>
-   *
-   * ch_im_in is multiple of 2 
-   *
-   * ch_im_out is multipe of 2
-   *
-   */
-
-    arm_status
-    arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
-                              const uint16_t dim_im_in_x,
-                              const uint16_t dim_im_in_y,
-                              const uint16_t ch_im_in,
-                              const q15_t * wt,
-                              const uint16_t ch_im_out,
-                              const uint16_t dim_kernel_x,
-                              const uint16_t dim_kernel_y,
-                              const uint16_t padding_x,
-                              const uint16_t padding_y,
-                              const uint16_t stride_x,
-                              const uint16_t stride_y,
-                              const q15_t * bias,
-                              const uint16_t bias_shift,
-                              const uint16_t out_shift,
-                              q15_t * Im_out,
-                              const uint16_t dim_im_out_x,
-                              const uint16_t dim_im_out_y, 
-                              q15_t * bufferA, 
-                              q7_t * bufferB);
-										 
-  /**
-   * @brief Q7 depthwise separable convolution function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       wt          pointer to kernel weights
-   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       bias        pointer to bias
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input 
-   * @param[in,out]   bufferB     pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 2
-   *   ch_im_out is multiple of 2
-   */
-
-    arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
-                                                   const uint16_t dim_im_in,
-                                                   const uint16_t ch_im_in,
-                                                   const q7_t * wt,
-                                                   const uint16_t ch_im_out,
-                                                   const uint16_t dim_kernel,
-                                                   const uint16_t padding,
-                                                   const uint16_t stride,
-                                                   const q7_t * bias,
-                                                   const uint16_t bias_shift,
-                                                   const uint16_t out_shift,
-                                                   q7_t * Im_out,
-                                                   const uint16_t dim_im_out, 
-                                                   q15_t * bufferA, 
-                                                   q7_t * bufferB);
-
-  /**
-   * @brief Q7 depthwise separable convolution function (non-square shape)
-   * @param[in]       Im_in         pointer to input tensor
-   * @param[in]       dim_im_in_x   input tensor dimention x
-   * @param[in]       dim_im_in_y   input tensor dimention y
-   * @param[in]       ch_im_in      number of input tensor channels
-   * @param[in]       wt            pointer to kernel weights
-   * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
-   * @param[in]       dim_kernel_x  filter kernel size x
-   * @param[in]       dim_kernel_y  filter kernel size y
-   * @param[in]       padding_x     padding sizes x
-   * @param[in]       padding_y     padding sizes y
-   * @param[in]       stride_x      convolution stride x
-   * @param[in]       stride_y      convolution stride y
-   * @param[in]       bias          pointer to bias
-   * @param[in]       bias_shift    amount of left-shift for bias
-   * @param[in]       out_shift     amount of right-shift for output
-   * @param[in,out]   Im_out        pointer to output tensor
-   * @param[in]       dim_im_out_x  output tensor dimension x
-   * @param[in]       dim_im_out_y  output tensor dimension y
-   * @param[in,out]   bufferA       pointer to buffer space for input 
-   * @param[in,out]   bufferB       pointer to buffer space for output
-   * @return     The function returns either
-   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
-   *
-   * This function is the version with full list of optimization tricks, but with
-   * some contraints:
-   *   ch_im_in is multiple of 2
-   *   ch_im_out is multiple of 2
-   */
-    arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
-                                                             const uint16_t dim_im_in_x,
-                                                             const uint16_t dim_im_in_y,
-                                                             const uint16_t ch_im_in,
-                                                             const q7_t * wt,
-                                                             const uint16_t ch_im_out,
-                                                             const uint16_t dim_kernel_x,
-                                                             const uint16_t dim_kernel_y,
-                                                             const uint16_t padding_x,
-                                                             const uint16_t padding_y,
-                                                             const uint16_t stride_x,
-                                                             const uint16_t stride_y,
-                                                             const q7_t * bias,
-                                                             const uint16_t bias_shift,
-                                                             const uint16_t out_shift,
-                                                             q7_t * Im_out,
-                                                             const uint16_t dim_im_out_x,
-                                                             const uint16_t dim_im_out_y,
-                                                             q15_t * bufferA,
-                                                             q7_t * bufferB);
-
-
-/**
- * @defgroup FC Fully-connected Layer Functions
- *
- * Perform fully-connected layer
- *
- * Fully-connected layer is basically a matrix-vector multiplication
- * with bias. The matrix is the weights and the input/output vectors
- * are the activation values. Supported {weight, activation} precisions
- * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
- *
- * Here we have two types of kernel functions. The basic function
- * implements the function using regular GEMV approach. The opt functions
- * operates with weights in interleaved formats. 
- *
- */
-
-  /**
-   * @brief Q7 basic fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_q7(const q7_t * pV,
-                                      const q7_t * pM,
-                                      const uint16_t dim_vec,
-                                      const uint16_t num_of_rows,
-                                      const uint16_t bias_shift,
-                                      const uint16_t out_shift, 
-                                      const q7_t * bias, 
-                                      q7_t * pOut, 
-                                      q15_t * vec_buffer);
-
-  /**
-   * @brief Q7 opt fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_q7_opt(const q7_t * pV,
-                                          const q7_t * pM,
-                                          const uint16_t dim_vec,
-                                          const uint16_t num_of_rows,
-                                          const uint16_t bias_shift,
-                                          const uint16_t out_shift, 
-                                          const q7_t * bias, 
-                                          q7_t * pOut, 
-                                          q15_t * vec_buffer);
-
-  /**
-   * @brief Q15 basic fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_q15(const q15_t * pV,
-                                       const q15_t * pM,
-                                       const uint16_t dim_vec,
-                                       const uint16_t num_of_rows,
-                                       const uint16_t bias_shift,
-                                       const uint16_t out_shift, 
-                                       const q15_t * bias, 
-                                       q15_t * pOut, 
-                                       q15_t * vec_buffer);
-
-  /**
-   * @brief Q15 opt fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_q15_opt(const q15_t * pV,
-                                           const q15_t * pM,
-                                           const uint16_t dim_vec,
-                                           const uint16_t num_of_rows,
-                                           const uint16_t bias_shift,
-                                           const uint16_t out_shift,
-                                           const q15_t * bias, 
-                                           q15_t * pOut, 
-                                           q15_t * vec_buffer);
-
-  /**
-   * @brief Mixed Q15-Q7 fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
-                                                  const q7_t * pM,
-                                                  const uint16_t dim_vec,
-                                                  const uint16_t num_of_rows,
-                                                  const uint16_t bias_shift,
-                                                  const uint16_t out_shift,
-                                                  const q7_t * bias, 
-                                                  q15_t * pOut, 
-                                                  q15_t * vec_buffer);
-
-  /**
-   * @brief Mixed Q15-Q7 opt fully-connected layer function
-   * @param[in]       pV          pointer to input vector
-   * @param[in]       pM          pointer to matrix weights
-   * @param[in]       dim_vec     length of the vector
-   * @param[in]       num_of_rows number of rows in weight matrix
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        pointer to bias
-   * @param[in,out]   pOut        pointer to output vector
-   * @param[in,out]   vec_buffer  pointer to buffer space for input
-   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
-   *
-   */
-
-    arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
-                                                      const q7_t * pM,
-                                                      const uint16_t dim_vec,
-                                                      const uint16_t num_of_rows,
-                                                      const uint16_t bias_shift,
-                                                      const uint16_t out_shift,
-                                                      const q7_t * bias, 
-                                                      q15_t * pOut, 
-                                                      q15_t * vec_buffer);
-
-/**
- * @brief Matrix-Multiplication Kernels for Convolution
- *
- * These functions are used within convolution layer functions for 
- * matrix multiplication.
- * 
- * The implementation is similar to CMSIS-DSP arm_mat_mult functions
- * with one Q7 and one Q15 operands. The Q15 operand is the im2col
- * output which is always with 2 columns.
- *
- */
-
-  /**
-   * @brief Matrix-multiplication function for convolution
-   * @param[in]       pA          pointer to operand A
-   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
-   * @param[in]       ch_im_out   numRow of A
-   * @param[in]       numCol_A    numCol of A
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        the bias
-   * @param[in,out]   pOut        pointer to output
-   * @return     The function returns the incremented output pointer
-   */
-
-    q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
-                                            const q15_t * pInBuffer,
-                                            const uint16_t ch_im_out,
-                                            const uint16_t numCol_A,
-                                            const uint16_t bias_shift,
-                                            const uint16_t out_shift, 
-                                            const q7_t * bias, 
-                                            q7_t * pOut);
-
-  /**
-   * @brief Matrix-multiplication function for convolution with reordered columns
-   * @param[in]       pA          pointer to operand A
-   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
-   * @param[in]       ch_im_out   numRow of A
-   * @param[in]       numCol_A    numCol of A
-   * @param[in]       bias_shift  amount of left-shift for bias
-   * @param[in]       out_shift   amount of right-shift for output
-   * @param[in]       bias        the bias
-   * @param[in,out]   pOut        pointer to output
-   * @return     The function returns the incremented output pointer
-   */
-
-    q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
-                                                      const q15_t * pInBuffer,
-                                                      const uint16_t ch_im_out,
-                                                      const uint16_t numCol_A,
-                                                      const uint16_t bias_shift,
-                                                      const uint16_t out_shift, 
-                                                      const q7_t * bias, 
-                                                      q7_t * pOut);
-
-#ifdef __cplusplus
-}
-#endif
-
-/*
- *  Other functions
- *  These layers are typically not timing critical
- *  Basic implementation is supported here
- */
-
-#ifdef __cplusplus
-extern    "C"
-{
-#endif
-
-/**
- * @defgroup Acti Neural Network Activation Functions
- *
- * Perform activation layers, including ReLU (Rectified Linear Unit),
- * sigmoid and tanh
- *
- */
-
-  /**
-   * @brief Q7 RELU function
-   * @param[in,out]   data        pointer to input
-   * @param[in]       size        number of elements
-   * @return none.
-   */
-
-    void      arm_relu_q7(q7_t * data, uint16_t size);
-
-  /**
-   * @brief Q15 RELU function
-   * @param[in,out]   data        pointer to input
-   * @param[in]       size        number of elements
-   * @return none.
-   */
-
-    void      arm_relu_q15(q15_t * data, uint16_t size);
-
-  /**
-   * @brief Q7 neural network activation function using direct table look-up
-   * @param[in,out]   data        pointer to input
-   * @param[in]       size        number of elements
-   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
-   * @param[in]       type        type of activation functions
-   * @return none.
-   */
-
-    void      arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, 
-                                           arm_nn_activation_type type);
-
-  /**
-   * @brief Q15 neural network activation function using direct table look-up
-   * @param[in,out]   data        pointer to input
-   * @param[in]       size        number of elements
-   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
-   * @param[in]       type        type of activation functions
-   * @return none.
-   */
-
-    void      arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
-                                            arm_nn_activation_type type);
-
-/**
- * @defgroup Pooling Neural Network Pooling Functions
- *
- * Perform pooling functions, including max pooling and average pooling
- *
- */
-
-  /**
-   * @brief Q7 max pooling function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @return none.
-   *
-   */
-
-    void      arm_maxpool_q7_HWC(q7_t * Im_in,
-                                 const uint16_t dim_im_in,
-                                 const uint16_t ch_im_in,
-                                 const uint16_t dim_kernel,
-                                 const uint16_t padding,
-                                 const uint16_t stride, 
-                                 const uint16_t dim_im_out, 
-                                 q7_t * bufferA, 
-                                 q7_t * Im_out);
-
-  /**
-   * @brief Q7 average pooling function
-   * @param[in]       Im_in       pointer to input tensor
-   * @param[in]       dim_im_in   input tensor dimention
-   * @param[in]       ch_im_in    number of input tensor channels
-   * @param[in]       dim_kernel  filter kernel size
-   * @param[in]       padding     padding sizes
-   * @param[in]       stride      convolution stride
-   * @param[in]       dim_im_out  output tensor dimension
-   * @param[in,out]   bufferA     pointer to buffer space for input
-   * @param[in,out]   Im_out      pointer to output tensor
-   * @return none.
-   *
-   */
-
-    void      arm_avepool_q7_HWC(q7_t * Im_in,
-                                 const uint16_t dim_im_in,
-                                 const uint16_t ch_im_in,
-                                 const uint16_t dim_kernel,
-                                 const uint16_t padding,
-                                 const uint16_t stride, 
-                                 const uint16_t dim_im_out, 
-                                 q7_t * bufferA, 
-                                 q7_t * Im_out);
-
-/**
- * @defgroup Softmax Softmax Functions
- *
- * EXP(2) based softmax function
- *
- */
-
-  /**
-   * @brief Q7 softmax function
-   * @param[in]       vec_in      pointer to input vector
-   * @param[in]       dim_vec     input vector dimention
-   * @param[out]      p_out       pointer to output vector
-   * @return none.
-   *
-   */
-
-    void      arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
-
-  /**
-   * @brief Q15 softmax function
-   * @param[in]       vec_in      pointer to input vector
-   * @param[in]       dim_vec     input vector dimention
-   * @param[out]      p_out       pointer to output vector
-   * @return none.
-   *
-   */
-
-    void      arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
diff --git a/Blink/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h b/Blink/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
deleted file mode 100644
index 05a239d..0000000
--- a/Blink/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
+++ /dev/null
@@ -1,202 +0,0 @@
-/*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/* ----------------------------------------------------------------------
- * Project:      CMSIS NN Library
- * Title:        arm_nnsupportfunctions.h
- * Description:  Public header file of support functions for CMSIS NN Library
- *
- * $Date:        13. July 2018
- * $Revision:    V.1.0.0
- *
- * Target Processor:  Cortex-M cores
- * -------------------------------------------------------------------- */
-
-#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
-#define _ARM_NNSUPPORTFUNCTIONS_H_
-
-#include "arm_math.h"
-#include "arm_common_tables.h"
-//#include <cstring>
-
-#ifdef __cplusplus
-extern    "C"
-{
-#endif
-
-/**
- * @brief Union for SIMD access of Q31/Q15/Q7 types
- */
-union arm_nnword
-{
-    q31_t     word;
-               /**< Q31 type */
-    q15_t     half_words[2];
-               /**< Q15 type */
-    q7_t      bytes[4];
-               /**< Q7 type */
-};
-
-/**
- * @brief Struct for specifying activation function types
- *
- */
-typedef enum
-{
-    ARM_SIGMOID = 0,
-                /**< Sigmoid activation function */
-    ARM_TANH = 1,
-             /**< Tanh activation function */
-} arm_nn_activation_type;
-
-/**
- * @defgroup nndata_convert Neural Network Data Conversion Functions
- *
- * Perform data type conversion in-between neural network operations
- *
- */
-
-/**
- * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift 
- * @param[in]       *pSrc points to the Q7 input vector    
- * @param[out]      *pDst points to the Q15 output vector   
- * @param[in]       blockSize length of the input vector    
- * @return none.    
- *
- */
-
-void      arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
-
-/**
- * @brief  Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
- * @param[in]       *pSrc points to the Q7 input vector    
- * @param[out]      *pDst points to the Q15 output vector   
- * @param[in]       blockSize length of the input vector    
- * @return none.    
- *
- */
-
-void      arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
-
-#if defined (ARM_MATH_DSP)
-
-/**
- * @brief read and expand one Q7 word into two Q15 words
- */
-
-__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2)
-{
-        q31_t     inA = *__SIMD32(source)++;
-        q31_t     inAbuf1 = __SXTB16(__ROR(inA, 8));
-        q31_t     inAbuf2 = __SXTB16(inA);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-        *out2 = __PKHTB(inAbuf1, inAbuf2, 16);
-        *out1 = __PKHBT(inAbuf2, inAbuf1, 16);
-#else
-        *out1 = __PKHTB(inAbuf1, inAbuf2, 16);
-        *out2 = __PKHBT(inAbuf2, inAbuf1, 16);
-#endif
-
-        return source;
-}
-
-/**
- * @brief read and expand one Q7 word into two Q15 words with reordering
- */
-
-__STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2)
-{
-        q31_t     inA = *__SIMD32(source)++;
-#ifndef ARM_MATH_BIG_ENDIAN
-        *out2 = __SXTB16(__ROR(inA, 8));
-        *out1 = __SXTB16(inA);
-#else
-        *out1 = __SXTB16(__ROR(inA, 8));
-        *out2 = __SXTB16(inA);
-#endif
-
-        return source;
-}
-#endif
-
-/**
- * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
- *
- * Basic Math Functions for Neural Network Computation
- *
- */
-
-/**
- * @brief           Q7 vector multiplication with variable output shifts
- * @param[in]       *pSrcA        pointer to the first input vector
- * @param[in]       *pSrcB        pointer to the second input vector
- * @param[out]      *pDst         pointer to the output vector
- * @param[in]       out_shift     amount of right-shift for output
- * @param[in]       blockSize     number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
- */
-
-void arm_nn_mult_q15(
-  q15_t * pSrcA,
-  q15_t * pSrcB,
-  q15_t * pDst,
-  const uint16_t out_shift,
-  uint32_t blockSize);
-  
-/**
- * @brief           Q7 vector multiplication with variable output shifts
- * @param[in]       *pSrcA        pointer to the first input vector
- * @param[in]       *pSrcB        pointer to the second input vector
- * @param[out]      *pDst         pointer to the output vector
- * @param[in]       out_shift     amount of right-shift for output
- * @param[in]       blockSize     number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
- */
-
-void arm_nn_mult_q7(
-  q7_t * pSrcA,
-  q7_t * pSrcB,
-  q7_t * pDst,
-  const uint16_t out_shift,
-  uint32_t blockSize);
- 
-/**
- * @brief defition to adding rouding offset
- */
-#ifndef ARM_NN_TRUNCATE
-    #define NN_ROUND(out_shift) ( 0x1 << (out_shift - 1) )
-#else
-    #define NN_ROUND(out_shift) 0
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-- 
cgit