1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"import matplotlib\n",
"\n",
"import scipy.signal as sig"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib widget"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "712481c28d9d4e1d874a66d31c3e8bff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(0, 64)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"a = np.array([-00.000732, -00.000352, -00.000666, -00.000202, -00.000706, -00.000006, -00.000597, -00.002039, 000.050663, -00.644566, 004.456614, -16.817095, 034.654587, -39.021217, 024.007816, -08.070650, 001.478795, -00.150260, 000.006110, -00.002328, -00.002322, -00.002426, -00.002177, -00.002452, -00.002333, -00.002438, -00.002342, -00.002396, -00.001979, -00.003049, -00.001720, -00.002686, -00.002168, -00.002507, -00.001868, -00.002899, -00.002017, -00.001952, -00.003255, -00.001080, -00.003335, -00.001575, -00.002704, -00.001872, -00.002735, -00.001983, -00.002191, -00.002478, -00.002155, -00.002203, -00.002328, -00.002206, -00.002443, -00.001770, -00.002718, -00.002004, -00.002378, -00.002112, -00.002122, -00.002691, -00.001679, -00.002690, -00.001946, -00.002232])\n",
"b = np.array([-00.002734, -00.001325, -00.002220, -00.003693, -00.004907, -00.006454, -00.007737, 000.004823, -00.363143, 004.688968, -33.795303, 130.992630, -274.092651, 309.377991, -188.427826, 061.912941, -10.974002, 001.053608, -00.048927, 000.007710, 000.007010, 000.006493, 000.007234, 000.006725, 000.006938, 000.006694, 000.006356, 000.006173, 000.006333, 000.005684, 000.005697, 000.005575, 000.005101, 000.005693, 000.004319, 000.005344, 000.004673, 000.003566, 000.006213, 000.002719, 000.004850, 000.003755, 000.004243, 000.003419, 000.003960, 000.003498, 000.003297, 000.003877, 000.002836, 000.003487, 000.003144, 000.002824, 000.003355, 000.002528, 000.002975, 000.003012, 000.002137, 000.003112, 000.002416, 000.002512, 000.002084, 000.003008, 000.001837, 000.002351])\n",
"ax.plot([3.906250*i for i in range(len(a))], np.sqrt(a**2 + b**2))\n",
"a2 = ax.twiny()\n",
"a2.set_xlim([0, len(a)])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d4024377df494eac935fd487026edc8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f2eb410f280>]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"d = [50.000839,50.000839,50.000832,50.000824,50.000839,50.000832,50.000839,50.000824,50.000847,50.000824,50.000824,50.000839,50.000832,50.000839,50.000824,50.000824,50.000839,50.000824,50.000824,50.000835,50.000816,50.000832,50.000847,50.000832,50.000835,50.000824,50.000824,50.000832,50.000832,50.000843,50.000824,50.000832,50.000832,50.000832,50.000828,50.000832,50.000832,50.000824,50.000816,50.000835,50.000843,50.000824,50.000824,50.000832,50.000832,50.000847,50.000824,50.000824,50.000824,50.000835,50.000835,50.000851,50.000824,50.000824,50.000832,50.000828,50.000828,50.000824,50.000832,50.000835,50.000835,50.000832,50.000847,50.000824,50.000832,50.000839,50.000839,50.000824,50.000832,50.000832,50.000832,50.000835,50.000816,50.000820,50.000824,50.000832,50.000824,50.000832,50.000835,50.000832,50.000816,50.000820,50.000839,50.000839,50.000824,50.000839,50.000820,50.000820,50.000839,50.000832,50.000835,50.000828,50.000824,50.000839,50.000839,50.000839,50.000816,50.000832,50.000824,50.000832,50.000832,50.000839,50.000824,50.000832,50.000828,50.000832,50.000828,50.000835,50.000832,50.000843,50.000839,50.000820,50.000832,50.000835,50.000824,50.000824,50.000828,50.000820,50.000820,50.000828,50.000832,50.000832,50.000828,50.000835,50.000839,50.000820,50.000832,50.000832,50.000824,50.000832,50.000832,50.000839,50.000839,50.000816,50.000828,50.000832,50.000839,50.000824,50.000824,50.000824,50.000835,50.000824,50.000832,50.000839,50.000835,50.000832,50.000828,50.000835,50.000828,50.000828,50.000824,50.000824,50.000839,50.000832,50.000824,50.000832,50.000832,50.000820,50.000851,50.000824,50.000824,50.000839,50.000824,50.000839,50.000832,50.000835,50.000820,50.000832,50.000839,50.000832,50.000832,50.000824,50.000832,50.000824,50.000832,50.000839,50.000839,50.000832,50.000816,50.000835,50.000854,50.000824,50.000816,50.000832,50.000832,50.000835,50.000816,50.000832,50.000824,50.000832,50.000832,50.000832,50.000824,50.000832,50.000824,50.000835,50.000832,50.000835,50.000832,50.000832,50.000828,50.000839,50.000824,50.000839,50.000824,50.000824,50.000839,50.000816,50.000839,50.000816,50.000832,50.000839,50.000839,50.000832,50.000824,50.000832,50.000820,50.000824,50.000835,50.000824,50.000835,50.000832,50.000824,50.000824,50.000820,50.000839,50.000816,50.000832,50.000832,50.000832,50.000824,50.000847,50.000824,50.000839]\n",
"\n",
"ax.plot(d)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"with open('impl_test_out.json') as f:\n",
" impl_measurements = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd23cf23221e4e14aaafdd58bb9416d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(len(impl_measurements), figsize=(8, 20), sharex=True)\n",
"fig.tight_layout()\n",
"axs = axs.flatten()\n",
"\n",
"for (label, data), ax in zip(impl_measurements.items(), axs):\n",
" ax.set_title(label)\n",
" ax.plot(data[1:-1])\n",
" mean = np.mean(data[1:-1])\n",
" rms = np.sqrt(np.mean(np.square(data[1:-1] - mean)))\n",
" ax.text(0.2, 0.2, f'mean={mean:.3}Hz, rms={rms*1e3:.3}mHz', ha='center', va='center', transform=ax.transAxes,\n",
" bbox=dict(boxstyle=\"square\", ec=(0,0,0,0), fc=(1,1,1,0.8)))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 2.35232554e-18, 4.70465108e-18, 2.35232554e-18,\n",
" 1.00000000e+00, -1.97549493e+00, 9.75650918e-01],\n",
" [ 1.00000000e+00, 2.00000000e+00, 1.00000000e+00,\n",
" 1.00000000e+00, -1.97916324e+00, 9.79319515e-01],\n",
" [ 1.00000000e+00, 2.00000000e+00, 1.00000000e+00,\n",
" 1.00000000e+00, -1.98597735e+00, 9.86134166e-01],\n",
" [ 1.00000000e+00, 2.00000000e+00, 1.00000000e+00,\n",
" 1.00000000e+00, -1.99495144e+00, 9.95108965e-01]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sig.butter(8, 20e-3, output='sos', fs=10.0)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "winlabenv",
"language": "python",
"name": "winlabenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|