1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Grid frequency estimation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import sqlite3\n",
"import struct\n",
"import datetime\n",
"import scipy.fftpack\n",
"from scipy import signal as sig\n",
"\n",
"import matplotlib\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib import patches\n",
"import numpy as np\n",
"from scipy import signal, optimize\n",
"from tqdm.notebook import tnrange, tqdm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib widget"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Setup\n",
"### Load data series information from sqlite capture file\n",
"\n",
"One capture file may contain multiple runs/data series. Display a list of runs and their start/end time and sample count, then select the newest one in `last_run` variable."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"db = sqlite3.connect('data/waveform-raspi-ocxo-2.sqlite3')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Run 000: 2020-04-01 14:00:25 - 2020-04-01 15:09:31 ( 1:09:05.846, 4197664sp)\n",
"Run 001: 2020-04-02 11:56:41 - 2020-04-02 11:57:59 ( 0:01:18.544, 79552sp)\n",
"Run 002: 2020-04-02 12:03:51 - 2020-04-02 12:12:54 ( 0:09:03.033, 549792sp)\n"
]
}
],
"source": [
"for run_id, start, end, count in db.execute('SELECT run_id, MIN(rx_ts), MAX(rx_ts), COUNT(*) FROM measurements GROUP BY run_id'):\n",
" foo = lambda x: datetime.datetime.fromtimestamp(x/1000)\n",
" start, end = foo(start), foo(end)\n",
" print(f'Run {run_id:03d}: {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S} ({str(end-start)[:-3]:>13}, {count*32:>9d}sp)')\n",
"last_run, n_records = run_id, count"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup analog parameters\n",
"\n",
"Setup parameters of analog capture hardware here. This is used to scale samples from ADC counts to analog voltages. Also setup sampling rate here. Nominal sampling rate is 1 ksps."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"sampling_rate = 1000.0 * 48.6 / 48\n",
"\n",
"par = lambda *rs: 1/sum(1/r for r in rs) # resistor parallel calculation\n",
"\n",
"# Note: These are for the first prototype only!\n",
"vmeas_source_impedance = 330e3\n",
"vmeas_source_scale = 0.5\n",
"\n",
"vcc = 15.0\n",
"vmeas_div_high = 27e3\n",
"vmeas_div_low = par(4.7e3, 10e3)\n",
"vmeas_div_voltage = vcc * vmeas_div_low / (vmeas_div_high + vmeas_div_low)\n",
"vmeas_div_impedance = par(vmeas_div_high, vmeas_div_low)\n",
"\n",
"#vmeas_overall_factor = vmeas_div_impedance / (vmeas_source_impedance + vmeas_div_impedance)\n",
"v0 = 1.5746\n",
"v100 = 2.004\n",
"vn100 = 1.1452\n",
"\n",
"adc_vcc = 3.3 # V\n",
"adc_fullscale = 4095\n",
"\n",
"adc_val_to_voltage_factor = 1/adc_fullscale * adc_vcc\n",
"\n",
"adc_count_to_vmeas = lambda x: (x*adc_val_to_voltage_factor - v0) / (v100-v0) * 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load run data from sqlite3 capture file\n",
"\n",
"Load measurement data for the selected run and assemble a numpy array containing one continuous trace. "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "38970a137bed494d8c28c270471c73df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=17181.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RMS voltage: 228.5564548966498\n"
]
}
],
"source": [
"limit = n_records\n",
"record_size = 32\n",
"skip_dropped_sections = False\n",
"\n",
"data = np.zeros(limit*record_size)\n",
"data[:] = np.nan\n",
"\n",
"last_seq = None\n",
"write_index = 0\n",
"for i, (seq, chunk) in tqdm(enumerate(db.execute(\n",
" 'SELECT seq, data FROM measurements WHERE run_id = ? ORDER BY rx_ts LIMIT ? OFFSET ?',\n",
" (last_run, limit, n_records-limit))), total=n_records):\n",
" \n",
" if last_seq is None or seq == (last_seq + 1)%0x10000:\n",
" last_seq = seq\n",
" idx = write_index if skip_dropped_sections else i\n",
" data[idx*record_size:(idx+1)*record_size] = np.frombuffer(chunk, dtype='<H')\n",
" write_index += 1\n",
" \n",
" elif seq > last_seq:\n",
" last_seq = seq\n",
" # nans = np.empty((record_size,))\n",
" # nans[:] = np.nan\n",
" # data = np.append(data, nans) FIXME\n",
" \n",
"data = (data * adc_val_to_voltage_factor - v0) / (v100-v0) * 100\n",
"\n",
"# https://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array\n",
"nan_helper = lambda y: (np.isnan(y), lambda z: z.nonzero()[0])\n",
"\n",
"# data rarely may contain NaNs where the capture script failed to read and acknowledge capture buffers from the sensor board fast enough.\n",
"# For RMS calculation and overall FFT fill these NaNs with interpolated values from their neighbors.\n",
"data_not_nan = np.copy(data)\n",
"nans, x = nan_helper(data)\n",
"data_not_nan[nans]= np.interp(x(nans), x(~nans), data[~nans])\n",
"\n",
"print('RMS voltage:', np.sqrt(np.mean(np.square(data_not_nan))))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show a preview of loaded data"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-33-4419e570bd12>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6faa0da0b6b64d0094b9b683e5f2c434",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n",
"fig.tight_layout(pad=3, h_pad=1.8)\n",
"\n",
"range_start, range_len = -300, 60 # [s]\n",
"\n",
"data_slice = data[ int(range_start * sampling_rate) : int((range_start + range_len) * sampling_rate) ]\n",
"\n",
"top.grid()\n",
"top.plot(np.linspace(0, range_len, int(range_len*sampling_rate)), data_slice, lw=1.0)\n",
"top.set_xlim([range_len/2-0.25, range_len/2+0.25])\n",
"mean = np.mean(data_not_nan)\n",
"rms = np.sqrt(np.mean(np.square(data_not_nan - mean)))\n",
"peak = np.max(np.abs(data_not_nan - mean))\n",
"top.axhline(mean, color='red')\n",
"bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n",
"top.text(0.02, 0.5, f'mean: {mean:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='left', va='center')\n",
"top.text(0.98, 0.2, f'V_RMS: {rms:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n",
"top.text(0.98, 0.1, f'V_Pk: {peak:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n",
"top.text(0.5, 0.9, f'Run {run_id}', transform=top.transAxes, color='white', bbox=bbox, ha='center', fontweight='bold')\n",
"\n",
"bottom.grid()\n",
"bottom.specgram(data_slice, Fs=sampling_rate)\n",
"top.set_ylabel('U [V]')\n",
"bottom.set_ylabel('F [Hz]')\n",
"bottom.set_xlabel('t [s]')\n",
"\n",
"top.set_title('Voltage waveform')\n",
"bottom.set_title('Voltage frequency spectrum')\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2: Calculate Short-Time Fourier Transform of capture"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Window length: 405 sp, zero-padded to 405 sp\n"
]
}
],
"source": [
"fs = sampling_rate # Hz\n",
"ff = 50 # Hz\n",
"\n",
"analysis_periods = 20\n",
"window_len = fs * analysis_periods/ff\n",
"nfft_factor = 1\n",
"sigma = window_len/8 # samples\n",
"\n",
"f, t, Zxx = signal.stft(data,\n",
" fs = fs,\n",
" window=('gaussian', sigma),\n",
" nperseg = window_len,\n",
" nfft = window_len * nfft_factor)\n",
"print(f'Window length: {window_len:.0f} sp, zero-padded to {window_len * nfft_factor:.0f} sp')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show a preview of STFT results\n",
"\n",
"Cut out our approximate frequency range of interest"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-64-467ca72791b1>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ax = plt.subplots(figsize=(9, 3))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "95c94ad504b248febb55f81b0e919464",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(9, 3))\n",
"fig.tight_layout(pad=2, h_pad=0.1)\n",
"\n",
"ax.pcolormesh(t[-200:-100], f[:250], np.abs(Zxx[:250,-200:-100]))\n",
"ax.set_title(f\"Run {last_run}\", pad=-20, color='white')\n",
"ax.grid()\n",
"ax.set_ylabel('f [Hz]')\n",
"ax.set_ylim([30, 75]) # Hz\n",
"ax.set_xlabel('simulation time t [s]')\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3: Run Gasior and Gonzalez for precise frequency estimation\n",
"\n",
"Limit analysis to frequency range of interest. If automatic adaption to totally different frequency ranges\n",
"(e.g. 400Hz) would be necessary, we could switch here based on configuration or a lookup of the STFT bin\n",
"containing highest overall energy.\n",
"\n",
"As elaborated in the Gasior and Gonzalez Paper [1] the shape of the template function should match the expected peak shape.\n",
"Peak shape is determined by the STFT window function. As Gasior and Gonzalez note, a gaussian is a very good fit for a steep gaussian window."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5443a7d157cc4a828cbffc91b2d645e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=2708.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"f_t = t\n",
"\n",
"n_f, n_t = Zxx.shape\n",
"# Frequency ROI\n",
"f_min, f_max = 30, 70 # Hz\n",
"# Indices of bins within ROI\n",
"bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n",
"\n",
"# Initialize output array\n",
"f_mean = np.zeros(Zxx.shape[1])\n",
"\n",
"# Iterate over STFT time slices\n",
"for le_t in tnrange(1, Zxx.shape[1] - 1):\n",
" # Cut out ROI and compute magnitude of complex fourier coefficients\n",
" frame_f = f[bounds_f]\n",
" frame_Z = np.abs(Zxx[bounds_f, le_t])\n",
"\n",
" # Template function. We use a gaussian here. This function needs to fit the window above.\n",
" def gauss(x, *p):\n",
" A, mu, sigma = p\n",
" return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n",
"\n",
" # Calculate initial values for curve fitting\n",
" f_start = frame_f[np.argmax(frame_Z)] # index of strongest bin index\n",
" A_start = np.max(frame_Z) # strongest bin value\n",
" p0 = [A_start, f_start, 1.]\n",
" try:\n",
" # Fit template to measurement data STFT ROI \n",
" coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n",
" _A, f_mean[le_t], _sigma, *_ = coeff # The measured frequency is the mean of the fitted gaussian\n",
" \n",
" except Exception as e:\n",
" # Handle fit errors\n",
" f_mean[le_t] = np.nan"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Produce a plot of measurement results\n",
"\n",
"Include measurements of mean, standard deviation and variance of measurement data"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-56-4e12d8913585>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1c391d0577f4dbeb59db8d1fa9261de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n",
"fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n",
"\n",
"# Cut off invalid values at fringes\n",
"ax.plot(f_t[1:-2], f_mean[1:-2])\n",
"ax.set_ylabel('f [Hz]')\n",
"ax.grid()\n",
"\n",
"var = np.var(f_mean[~np.isnan(f_mean)][1:-1])\n",
"mean = np.mean(f_mean[~np.isnan(f_mean)][1:-1])\n",
"ax.text(0.5, 0.95, f'Run {run_id}', transform=ax.transAxes, ha='center', fontweight='bold', color='white', bbox=bbox)\n",
"ax.text(0.05, 0.95, f'μ={mean:.3g} Hz', transform=ax.transAxes, ha='left', color='white', bbox=bbox)\n",
"ax.text(0.05, 0.89, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='left', color='white', bbox=bbox)\n",
"ax.text(0.05, 0.83, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='left', color='white', bbox=bbox)\n",
"\n",
"# Indicated missing values\n",
"for i in np.where(np.isnan(f_mean))[0]:\n",
" ax.axvspan(f_t[i], f_t[i+1], color='lightblue')\n",
"\n",
"formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n",
"ax.xaxis.set_major_formatter(formatter)\n",
"ax.set_xlabel('recording time t [hh:mm:ss]')\n",
"None"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-57-8b77e38496af>:9: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1209b4895814c92a9b0fa01ad666667",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "IndexError",
"evalue": "index 0 is out of bounds for axis 0 with size 0",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-57-8b77e38496af>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;31m# Cut out first 10min of filtered data to give filters time to settle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0mrms_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiltered2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwhere\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf_t\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mrms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msquare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrms_slice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf'RMS (band-pass): {rms*1e3:.3f}mHz'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransAxes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'white'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'center'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mIndexError\u001b[0m: index 0 is out of bounds for axis 0 with size 0"
]
}
],
"source": [
"f_copy = np.copy(f_mean[1:-1])\n",
"f_copy[np.isnan(f_copy)] = np.mean(f_copy[~np.isnan(f_copy)])\n",
"b, a = signal.cheby2(7, 86, 100, 'low', output='ba', fs=1000)\n",
"filtered = signal.lfilter(b, a, f_copy)\n",
"\n",
"b2, a2 = signal.cheby2(3, 30, 1, 'high', output='ba', fs=1000)\n",
"filtered2 = signal.lfilter(b2, a2, filtered)\n",
"\n",
"fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n",
"ax1.plot(f_t[1:-1], f_copy, color='lightgray')\n",
"ax1.set_ylim([49.90, 50.10])\n",
"ax1.grid()\n",
"formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n",
"ax1.xaxis.set_major_formatter(formatter)\n",
"zoom_offx = 7000 # s\n",
"zoom_len = 300 # s\n",
"ax1.set_xlim([zoom_offx, zoom_offx + zoom_len])\n",
"\n",
"ax1.plot(f_t[1:-1], filtered, color='orange')\n",
"ax1r = ax1.twinx()\n",
"ax1r.plot(f_t[1:-1], filtered2, color='red')\n",
"ax1r.set_ylim([-0.015, 0.015])\n",
"ax1.set_title(f'Zoomed trace ({datetime.timedelta(seconds=zoom_len)})', pad=-20)\n",
"\n",
"\n",
"ax2.set_title(f'Run {last_run}')\n",
"ax2.plot(f_t[1:-1], f_copy, color='orange')\n",
"\n",
"ax2r = ax2.twinx()\n",
"ax2r.set_ylim([-0.1, 0.1])\n",
"ax2r.plot(f_t[1:-1], filtered2, color='red')\n",
"#ax2.plot(f_t[1:-1], filtered, color='orange', zorder=1)\n",
"ax2.set_ylim([49.90, 50.10])\n",
"ax2.set_xlim([0, f_t[-2]])\n",
"ax2.grid()\n",
"formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n",
"ax2.xaxis.set_major_formatter(formatter)\n",
"\n",
"ax2.legend(handles=[\n",
" patches.Patch(color='lightgray', label='Raw frequency'),\n",
" patches.Patch(color='orange', label='low-pass filtered'),\n",
" patches.Patch(color='red', label='band-pass filtered')])\n",
"\n",
"#ax2r.spines['right'].set_color('red')\n",
"ax2r.yaxis.label.set_color('red')\n",
"#ax2r.tick_params(axis='y', colors='red')\n",
"\n",
"#ax1r.spines['right'].set_color('red')\n",
"ax1r.yaxis.label.set_color('red')\n",
"#ax1r.tick_params(axis='y', colors='red')\n",
"\n",
"ax1.set_ylabel('f [Hz]')\n",
"ax1r.set_ylabel('band-pass Δf [Hz]')\n",
"ax2.set_ylabel('f [Hz]')\n",
"ax2r.set_ylabel('band-pass Δf [Hz]')\n",
"\n",
"# Cut out first 10min of filtered data to give filters time to settle\n",
"rms_slice = filtered2[np.where(f_t[1:] > 10*60)[0][0]:]\n",
"rms = np.sqrt(np.mean(np.square(rms_slice)))\n",
"ax1.text(0.5, 0.1, f'RMS (band-pass): {rms*1e3:.3f}mHz', transform=ax1.transAxes, color='white', bbox=bbox, ha='center')\n",
"None"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"chunk_size = 256\n",
"#\n",
"#with open('filtered_freq.bin', 'wb') as f:\n",
"# for chunk in range(0, len(rms_slice), chunk_size):\n",
"# out_data = rms_slice[chunk:chunk+chunk_size]\n",
"# f.write(struct.pack(f'{len(out_data)}f', *out_data))\n",
"# \n",
"#with open('raw_freq.bin', 'wb') as f:\n",
"# for chunk in range(0, len(f_copy), chunk_size):\n",
"# out_data = f_copy[chunk:chunk+chunk_size]\n",
"# f.write(struct.pack(f'{len(out_data)}f', *out_data))"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"# Number of samplepoints\n",
"N = len(data_not_nan)\n",
"# sample spacing\n",
"T = 1.0 / sampling_rate\n",
"x = np.linspace(0.0, N*T, N)\n",
"yf = scipy.fftpack.fft(data_not_nan * sig.blackman(N))\n",
"xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
"\n",
"yf = 2.0/N * np.abs(yf[:N//2])\n",
"\n",
"average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n",
"\n",
"average_width = 6\n",
"average_start = 20\n",
"yf = average_from(yf, average_start, average_width)\n",
"xf = average_from(xf, average_start, average_width)\n",
"yf = average_from(yf, 200, average_width)\n",
"xf = average_from(xf, 200, average_width)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-77-2f4bcf6b2d33>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ax = plt.subplots(figsize=(6, 3))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b689c4f96fa40ffb5012764afb57564",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.\n"
]
}
],
"source": [
"fig, ax = plt.subplots(figsize=(6, 3))\n",
"fig.tight_layout()\n",
"ax.loglog(xf, yf)\n",
"#ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
"ax.set_xlabel('f [Hz]')\n",
"ax.set_ylabel('Amplitude V [V]')\n",
"ax.grid()\n",
"ax.set_xlim([0.001, 500])\n",
"fig.subplots_adjust(bottom=0.2)\n",
"\n",
"for le_f in (50, 150, 250, 350, 450):\n",
" ax.axvline(le_f, color=(1, 0.5, 0.5), zorder=-2)\n",
"ax.annotate('50 Hz', xy=(20, 1), xycoords='data', bbox=dict(fc='white', alpha=0.8, ec='none'))\n",
"font = {'family' : 'normal',\n",
" 'weight' : 'normal',\n",
" 'size' : 10}\n",
"matplotlib.rc('font', **font)\n",
"fig.savefig('fig_out/mains_voltage_spectrum.eps')"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-84-936ca777d145>:26: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ax = plt.subplots()\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b58b8858dea1485fae236c9fbb6954d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Number of samplepoints\n",
"newcopy = np.copy(f_mean[1:-2])\n",
"\n",
"nans, x = nan_helper(newcopy)\n",
"newcopy[nans]= np.interp(x(nans), x(~nans), newcopy[~nans])\n",
"\n",
"N = len(newcopy)\n",
"# sample spacing\n",
"T = 1.0 / 10\n",
"x = np.linspace(0.0, N*T, N)\n",
"yf = scipy.fftpack.fft(newcopy * sig.blackman(N))\n",
"xf = np.linspace(0.0, 10/2, N//2)\n",
"\n",
"yf = 2.0/N * np.abs(yf[:N//2])\n",
"\n",
"average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n",
"\n",
"average_width1, average_start1 = 3, 40\n",
"average_width2, average_start2 = 4, 100\n",
"yf = average_from(yf, average_start1, average_width1)\n",
"xf = average_from(xf, average_start1, average_width1)\n",
"yf = average_from(yf, average_start2, average_width2)\n",
"xf = average_from(xf, average_start2, average_width2)\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.loglog(xf, yf)\n",
"ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
"ax.set_xlabel('T [s]')\n",
"ax.set_ylabel('Amplitude Δf [Hz]')\n",
"\n",
"for i, t in enumerate([60, 300, 450, 1200, 1800]):\n",
" ax.axvline(1/t, color='red', alpha=0.5)\n",
" ax.annotate(f'{t} s', xy=(1/t, 3e-5), xytext=(-15, 0), xycoords='data', textcoords='offset pixels', rotation=90)\n",
"#ax.text(1/60, 10,'60 s', ha='left')\n",
"ax.grid()\n",
"#ax.set_xlim([1/60000, 0.5])\n",
"#ax.set_ylim([5e-7, 2e-2])\n",
"#ax.plot(xf[1:], 2e-6/xf[1:])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "671ae919bf124e72b54144310ea1602d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"ax.plot(np.linspace(0, (len(f_mean)-3)/10, len(f_mean)-3) , f_mean[1:-2])\n",
"ax.grid()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References\n",
"\n",
"1. **Gasior, M. & Gonzalez, J.** Improving FFT frequency measurement resolution by parabolic and gaussian interpolation *CERN-AB-Note-2004-021, CERN-AB-Note-2004-021, 2004*"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "labenv",
"language": "python",
"name": "labenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|