summaryrefslogtreecommitdiff
path: root/lab-windows/fec_experiments.ipynb
blob: e17e5606d3b6ed082a4a9f2db7b0e92c96c8f90a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib\n",
    "from matplotlib import pyplot as plt\n",
    "import pyldpc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib widget"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [],
   "source": [
    "H, G = pyldpc.make_ldpc(1024, 6, 8, systematic=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1024, 261)"
      ]
     },
     "execution_count": 95,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "n, k = G.shape\n",
    "G.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "<ipython-input-94-bc8d2a92108c>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
      "  fig, ax = plt.subplots(figsize=(15, 6))\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "96882c0b2fb3492a8fbcd68d4c1db371",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(15, 6))\n",
    "fig.tight_layout()\n",
    "ax.matshow(H)\n",
    "None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "<ipython-input-96-9621d966b0c0>:6: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
      "  fig, ax = plt.subplots(figsize=(15, 3))\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "961f48f481054e9da3c60ff5414e4ab8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f4bcd779e50>"
      ]
     },
     "execution_count": 96,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_data = np.random.randint(0, 2, k)\n",
    "\n",
    "d = np.dot(G, test_data) % 2\n",
    "x = (-1) ** d\n",
    "\n",
    "fig, ax = plt.subplots(figsize=(15, 3))\n",
    "ax.matshow(x.reshape((-1, 64)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.all(np.equal(pyldpc.get_message(G, pyldpc.decode(H, x, 3)), test_data))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "labenv",
   "language": "python",
   "name": "labenv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}