1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"from scipy import signal as sig\n",
"import struct\n",
"import random\n",
"import ipywidgets\n",
"import itertools\n",
"from multiprocessing import Pool\n",
"\n",
"import colorednoise\n",
"\n",
"np.set_printoptions(linewidth=240)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib widget"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"sampling_rate = 10 # sp/s"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py\n",
"preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]],\n",
" 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], \n",
" 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]}\n",
"\n",
"def gen_gold(seq1, seq2):\n",
" gold = [seq1, seq2]\n",
" for shift in range(len(seq1)):\n",
" gold.append(seq1 ^ np.roll(seq2, -shift))\n",
" return gold\n",
"\n",
"def gold(n):\n",
" n = int(n)\n",
" if not n in preferred_pairs:\n",
" raise KeyError('preferred pairs for %s bits unknown' % str(n))\n",
" t0, t1 = preferred_pairs[n]\n",
" (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1)\n",
" return gen_gold(seq0, seq1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def modulate(data, nbits=5):\n",
" # 0, 1 -> -1, 1\n",
" mask = np.array(gold(nbits))*2 - 1\n",
" \n",
" sel = mask[data>>1]\n",
" data_lsb_centered = ((data&1)*2 - 1)\n",
"\n",
" return (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def correlate(sequence, nbits=5, decimation=1, mask_filter=lambda x: x):\n",
" mask = np.tile(np.array(gold(nbits))[:,:,np.newaxis]*2 - 1, (1, 1, decimation)).reshape((2**nbits + 1, (2**nbits-1) * decimation))\n",
"\n",
" sequence -= np.mean(sequence)\n",
" \n",
" return np.array([np.correlate(sequence, row, mode='full') for row in mask])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mean: 49.98625\n"
]
}
],
"source": [
"with open('/mnt/c/Users/jaseg/shared/raw_freq.bin', 'rb') as f:\n",
" mains_noise = np.copy(np.frombuffer(f.read(), dtype='float32'))\n",
" print('mean:', np.mean(mains_noise))\n",
" mains_noise -= np.mean(mains_noise)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"def generate_test_signal(duration, nbits=6, signal_amplitude=2.0e-3, decimation=10, seed=0):\n",
" test_data = np.random.RandomState(seed=seed).randint(0, 2 * (2**nbits), duration)\n",
" \n",
" signal = np.repeat(modulate(test_data, nbits) * 2.0 - 1, decimation) * signal_amplitude\n",
" noise = np.resize(mains_noise, len(signal))\n",
" \n",
" return test_data, signal + noise"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"nonlinear_distance = lambda x: 100**(2*np.abs(0.5-x%1)) / (np.abs(x)+3)**2\n",
"\n",
"def plot_distance_func():\n",
" fig, ax = plt.subplots()\n",
" x = np.linspace(-1.5, 5.5, 10000)\n",
" ax.plot(x, nonlinear_distance(x))"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"noprint = lambda *args, **kwargs: None"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"def run_ser_test(sample_duration=128, nbits=6, signal_amplitude=2.0e-3, decimation=10, threshold_factor=4.0, power_avg_width=2.5, max_lookahead=6.5, seed=0, ax=None, print=print):\n",
"\n",
" test_data, signal = generate_test_signal(sample_duration, nbits, signal_amplitude, decimation, seed)\n",
" cor_an = correlate(signal, nbits=nbits, decimation=decimation)\n",
"\n",
" power_avg_width = int(power_avg_width * (2**nbits - 1) * decimation)\n",
"\n",
" bit_period = (2**nbits) * decimation\n",
" peak_group_threshold = 0.1 * bit_period\n",
" \n",
" cwt_res = np.array([ sig.cwt(row, sig.ricker, [0.73 * decimation]).flatten() for row in cor_an ])\n",
" if ax:\n",
" ax.grid()\n",
" ax.plot(cwt_res.T)\n",
" \n",
" th = np.array([ np.convolve(np.abs(row), np.ones((power_avg_width,))/power_avg_width, mode='same') for row in cwt_res ])\n",
"\n",
" def compare_th(elem):\n",
" idx, (th, val) = elem\n",
" #print('compare_th:', th.shape, val.shape)\n",
" return np.any(np.abs(val) > th*threshold_factor)\n",
"\n",
" peaks = [ list(group) for val, group in itertools.groupby(enumerate(zip(th.T, cwt_res.T)), compare_th) if val ]\n",
" peak_group = []\n",
" for group in peaks:\n",
" pos = np.mean([idx for idx, _val in group])\n",
" pol = np.mean([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group])\n",
" pol_idx = np.argmax(np.bincount([ np.argmax(np.abs(val)) for _idx, (_th, val) in group ]))\n",
" #print(f'group', pos, pol, pol_idx)\n",
" #for pol, (_idx, (_th, val)) in zip([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group], group):\n",
" # print(' ', pol, val)\n",
" if ax:\n",
" ax.axvline(pos, color='cyan', alpha=0.3)\n",
"\n",
" if not peak_group or pos - peak_group[-1][1] > peak_group_threshold:\n",
" if peak_group:\n",
" peak_pos = peak_group[-1][3]\n",
" if ax:\n",
" ax.axvline(peak_pos, color='red', alpha=0.6)\n",
" #ax3.text(peak_pos-20, 2.0, f'{0 if pol < 0 else 1}', horizontalalignment='right', verticalalignment='center', color='black')\n",
"\n",
" peak_group.append((pos, pos, pol, pos, pol_idx))\n",
" #ax3.axvline(pos, color='cyan', alpha=0.5)\n",
"\n",
" else:\n",
" group_start, last_pos, last_pol, peak_pos, last_pol_idx = peak_group[-1]\n",
"\n",
" if abs(pol) > abs(last_pol):\n",
" #ax3.axvline(pos, color='magenta', alpha=0.5)\n",
" peak_group[-1] = (group_start, pos, pol, pos, pol_idx)\n",
" else:\n",
" #ax3.axvline(pos, color='blue', alpha=0.5)\n",
" peak_group[-1] = (group_start, pos, last_pol, peak_pos, last_pol_idx)\n",
"\n",
" avg_peak = np.mean(np.abs(np.array([last_pol for _1, _2, last_pol, _3, _4 in peak_group])))\n",
" print('avg_peak', avg_peak)\n",
"\n",
" noprint = lambda *args, **kwargs: None\n",
" def mle_decode(peak_groups, print=print):\n",
" peak_groups = [ (pos, pol, idx) for _1, _2, pol, pos, idx in peak_groups ]\n",
" candidates = [ (0, [(pos, pol, idx)]) for pos, pol, idx in peak_groups if pos < bit_period*2.5 ]\n",
"\n",
" while candidates:\n",
" chain_candidates = []\n",
" for chain_score, chain in candidates:\n",
" pos, ampl, _idx = chain[-1]\n",
" score_fun = lambda pos, npos, npol: abs(npol)/avg_peak + nonlinear_distance((npos-pos)/bit_period)\n",
" next_candidates = sorted([ (score_fun(pos, npos, npol), npos, npol, nidx) for npos, npol, nidx in peak_groups if pos < npos < pos + bit_period*max_lookahead ], reverse=True)\n",
"\n",
" print(f' candidates for {pos}, {ampl}:')\n",
" for score, npos, npol, nidx in next_candidates:\n",
" print(f' {score:.4f} {npos:.2f} {npol:.2f} {nidx:.2f}')\n",
"\n",
" nch, cor_len = cor_an.shape\n",
" if cor_len - pos < 1.5*bit_period or not next_candidates:\n",
" score = sum(score_fun(opos, npos, npol) for (opos, _opol, _oidx), (npos, npol, _nidx) in zip(chain[:-1], chain[1:])) / len(chain)\n",
" yield score, chain\n",
"\n",
" else:\n",
" print('extending')\n",
" for score, npos, npol, nidx in next_candidates[:3]:\n",
" if score > 0.5:\n",
" new_chain_score = chain_score * 0.9 + score * 0.1\n",
" chain_candidates.append((new_chain_score, chain + [(npos, npol, nidx)]))\n",
" print('chain candidates:')\n",
" for score, chain in sorted(chain_candidates, reverse=True):\n",
" print(' ', [(score, [(f'{pos:.2f}', f'{pol:.2f}') for pos, pol, _idx in chain])])\n",
" candidates = [ (chain_score, chain) for chain_score, chain in sorted(chain_candidates, reverse=True)[:10] ]\n",
"\n",
" res = sorted(mle_decode(peak_group, print=noprint), reverse=True)\n",
" #for i, (score, chain) in enumerate(res):\n",
" # print(f'Chain {i}@{score:.4f}: {chain}')\n",
" (_score, chain), *_ = res\n",
"\n",
" def viz(chain):\n",
" last_pos = None\n",
" for pos, pol, nidx in chain:\n",
" if last_pos:\n",
" delta = int(round((pos - last_pos) / bit_period))\n",
" if delta > 1:\n",
" print(f'skipped {delta} symbols at {pos}')\n",
" for i in range(delta-1):\n",
" yield None\n",
" decoded = nidx*2 + (0 if pol < 0 else 1)\n",
" yield decoded\n",
" if ax:\n",
" ax.axvline(pos, color='blue', alpha=0.5)\n",
" ax.text(pos-20, 0.0, f'{decoded}', horizontalalignment='right', verticalalignment='center', color='black')\n",
"\n",
" last_pos = pos\n",
"\n",
" decoded = list(viz(chain))\n",
" print('decoding [ref|dec]:')\n",
" failures = 0\n",
" for i, (ref, found) in enumerate(itertools.zip_longest(test_data, decoded)):\n",
" print(f'{ref or -1:>3d}|{found or -1:>3d} {\"✔\" if ref==found else \"✘\" if found else \" \"}', end=' ')\n",
" if ref != found:\n",
" failures += 1\n",
" if i%8 == 7:\n",
" print()\n",
" ser = failures/len(test_data)\n",
" print(f'Symbol error rate e={ser}')\n",
" br = sampling_rate / decimation / (2**nbits) * nbits * (1 - ser) * 3600\n",
" print(f'maximum bitrate r={br} b/h')\n",
" return ser, br"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b7546a233fb4b6cb6e8f809250ba768",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(63,) (63,)\n",
"(63,) (63,)\n",
"avg_peak 1.6845488102985742\n",
"skipped 2 symbols at 10079.0\n",
"skipped 2 symbols at 30870.0\n",
"skipped 2 symbols at 42209.5\n",
"decoding [ref|dec]:\n",
" 44| 44 ✔ 47| 47 ✔ 117|117 ✔ 64| 64 ✔ 67| 67 ✔ 123|123 ✔ 67| 67 ✔ 103|103 ✔ \n",
" 9| 9 ✔ 83| 83 ✔ 21| 21 ✔ 114|114 ✔ 36| 36 ✔ 87| 87 ✔ 70| -1 88| 88 ✔ \n",
" 88| 88 ✔ 12| 12 ✔ 58| 58 ✔ 65| 65 ✔ 102|102 ✔ 39| 39 ✔ 87| 87 ✔ 46| 46 ✔ \n",
" 88| 88 ✔ 81| 81 ✔ 37| 37 ✔ 25| 25 ✔ 77| 77 ✔ 72| 72 ✔ 9| 9 ✔ 20| 20 ✔ \n",
"115|115 ✔ 80| 80 ✔ 115|115 ✔ 69| 69 ✔ 126|126 ✔ 79| 79 ✔ 47| 47 ✔ 64| 64 ✔ \n",
" 82| 82 ✔ 99| 99 ✔ 88| 88 ✔ 49| 49 ✔ 115|115 ✔ 29| 29 ✔ 19| 19 ✔ 19| -1 \n",
" 14| 14 ✔ 39| 39 ✔ 32| 32 ✔ 65| 65 ✔ 9| 9 ✔ 57| 57 ✔ 127|127 ✔ 32| 32 ✔ \n",
" 31| 31 ✔ 74| 74 ✔ 116|116 ✔ 23| 23 ✔ 35| 35 ✔ 126|126 ✔ 75| 75 ✔ 114|114 ✔ \n",
" 55| 55 ✔ 28| -1 34| 34 ✔ -1| -1 ✔ -1| -1 ✔ 36| 36 ✔ 53| 53 ✔ 5| 5 ✔ \n",
" 38| 38 ✔ 104|104 ✔ 116|116 ✔ 17| 17 ✔ 79| 79 ✔ 4| 4 ✔ 105|105 ✔ 42| 42 ✔ \n",
" 58| 58 ✔ 31| 31 ✔ 120|120 ✔ 1| 1 ✔ 65| 65 ✔ 103|103 ✔ 41| 41 ✔ 57| 57 ✔ \n",
" 35| 35 ✔ 102|103 ✘ 119|119 ✔ 11| 11 ✔ 46| 46 ✔ 82| 82 ✔ 91| 91 ✔ -1| -1 ✔ \n",
" 14| 14 ✔ 99| 99 ✔ 53| 53 ✔ 12| 12 ✔ 121|121 ✔ 42| 42 ✔ 84| 84 ✔ 75| 75 ✔ \n",
" 68| 68 ✔ 6| 6 ✔ 68| 68 ✔ 47| 47 ✔ 127|127 ✔ 116|116 ✔ 3| 3 ✔ 76| 76 ✔ \n",
"100|100 ✔ 52| 52 ✔ 104|104 ✔ 78| 78 ✔ 15| 15 ✔ 20| 20 ✔ 99| 99 ✔ 58| 58 ✔ \n",
" 23| 23 ✔ 79| 79 ✔ 13| 13 ✔ 117|117 ✔ 85| 85 ✔ 48| 48 ✔ 49| 49 ✔ 69| 69 ✔ \n",
"Symbol error rate e=0.03125\n",
"maximum bitrate r=326.953125 b/h\n"
]
}
],
"source": [
"fig, ax = plt.subplots(figsize=(12,5))\n",
"run_ser_test(ax=ax)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-84-f36c7b0ffb61>:13: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ax = plt.subplots(figsize=(12, 9))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5eb2cd4f4224f75bc3dc73b6143d849",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"nbits=5\n",
"signal_amplitude=0.00029: ser=1.01000 ±0.012207515615390381, br=-5.62500\n",
"signal_amplitude=0.00020: ser=1.01469 ±0.013678792892649557, br=-8.26172\n",
"signal_amplitude=0.00052: ser=1.00406 ±0.018895270572288715, br=-2.28516\n",
"signal_amplitude=0.00043: ser=1.01000 ±0.018817586521655747, br=-5.62500\n",
"signal_amplitude=0.00024: ser=1.01156 ±0.014510233457804875, br=-6.50391\n",
"signal_amplitude=0.00036: ser=1.00687 ±0.014875787794264881, br=-3.86719\n",
"signal_amplitude=0.00032: ser=1.01156 ±0.01837117307087384, br=-6.50391\n",
"signal_amplitude=0.00022: ser=1.01000 ±0.013535254892317322, br=-5.62500\n",
"signal_amplitude=0.00057: ser=1.00281 ±0.012476540486048206, br=-1.58203\n",
"signal_amplitude=0.00039: ser=1.00812 ±0.014402148277253642, br=-4.57031\n",
"signal_amplitude=0.00047: ser=1.00438 ±0.012899854650343935, br=-2.46094\n",
"signal_amplitude=0.00027: ser=1.00937 ±0.014657549249448218, br=-5.27344\n",
"signal_amplitude=0.00063: ser=0.99938 ±0.019253652250936705, br=0.35156\n",
"signal_amplitude=0.00077: ser=0.99156 ±0.03231920868461974, br=4.74609\n",
"signal_amplitude=0.00093: ser=0.95156 ±0.06625442202223185, br=27.24609\n",
"signal_amplitude=0.00112: ser=0.76000 ±0.2099632594348354, br=135.00000\n",
"signal_amplitude=0.00136: ser=0.51375 ±0.30673813139223494, br=273.51562\n",
"signal_amplitude=0.00165: ser=0.39844 ±0.38814210912370745, br=338.37891\n",
"signal_amplitude=0.00070: ser=0.99281 ±0.023688242072809035, br=4.04297\n",
"signal_amplitude=0.00084: ser=0.96375 ±0.050769469787461836, br=20.39062\n",
"signal_amplitude=0.00102: ser=0.91063 ±0.10310321739645179, br=50.27344\n",
"signal_amplitude=0.00124: ser=0.72500 ±0.23567348639059932, br=154.68750\n",
"signal_amplitude=0.00150: ser=0.40969 ±0.3064419041596629, br=332.05078\n",
"signal_amplitude=0.00182: ser=0.32531 ±0.38085840544748384, br=379.51172\n",
"signal_amplitude=0.00200: ser=0.29000 ±0.3885339029608613, br=399.37500\n",
"nbits=6\n",
"signal_amplitude=0.00052: ser=1.00375 ±0.027432445434193427, br=-1.26562\n",
"signal_amplitude=0.00029: ser=1.01531 ±0.013528038013695853, br=-5.16797\n",
"signal_amplitude=0.00020: ser=1.02000 ±0.01698459780212649, br=-6.75000\n",
"signal_amplitude=0.00024: ser=1.01844 ±0.0197494066366562, br=-6.22266\n",
"signal_amplitude=0.00043: ser=1.01000 ±0.013535254892317322, br=-3.37500\n",
"signal_amplitude=0.00036: ser=1.01500 ±0.01860884366369926, br=-5.06250\n",
"signal_amplitude=0.00032: ser=1.00906 ±0.01443601182806387, br=-3.05859\n",
"signal_amplitude=0.00022: ser=1.01656 ±0.015200483133769137, br=-5.58984\n",
"signal_amplitude=0.00057: ser=0.98281 ±0.04926213365760764, br=5.80078\n",
"signal_amplitude=0.00027: ser=1.02000 ±0.015946688527716343, br=-6.75000\n",
"signal_amplitude=0.00047: ser=1.00687 ±0.02815276407388802, br=-2.32031\n",
"signal_amplitude=0.00039: ser=1.00906 ±0.016189792308735775, br=-3.05859\n",
"signal_amplitude=0.00077: ser=0.76906 ±0.23454244018940368, br=77.94141\n",
"signal_amplitude=0.00063: ser=0.94031 ±0.08557822627572974, br=20.14453\n",
"signal_amplitude=0.00112: ser=0.29750 ±0.347296478171029, br=237.09375\n",
"signal_amplitude=0.00093: ser=0.50125 ±0.3293776683952632, br=168.32812\n",
"signal_amplitude=0.00136: ser=0.37250 ±0.42536588111001566, br=211.78125\n",
"signal_amplitude=0.00165: ser=0.51000 ±0.46215950303980546, br=165.37500\n",
"signal_amplitude=0.00070: ser=0.90063 ±0.1848975645458858, br=33.53906\n",
"signal_amplitude=0.00084: ser=0.64687 ±0.26652421325275494, br=119.17969\n",
"signal_amplitude=0.00124: ser=0.38500 ±0.39889079606767064, br=207.56250\n",
"signal_amplitude=0.00102: ser=0.40875 ±0.3467111099315971, br=199.54688\n",
"signal_amplitude=0.00150: ser=0.40375 ±0.4435118198819508, br=201.23438\n",
"signal_amplitude=0.00182: ser=0.58531 ±0.46179168734397985, br=139.95703\n",
"signal_amplitude=0.00200: ser=0.61594 ±0.4584529436730666, br=129.62109\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7fe2bdd64430>"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample_duration=128\n",
"sample_reps = 25\n",
"sweep_points = 25\n",
"\n",
"default_params = dict(\n",
" nbits=6,\n",
" signal_amplitude=2.0e-3,\n",
" decimation=10,\n",
" threshold_factor=4.0,\n",
" power_avg_width=2.5,\n",
" max_lookahead=6.5)\n",
"\n",
"fig, ax = plt.subplots(figsize=(12, 9))\n",
"\n",
"for nbits in [5, 6]: # FIXME make sim stable for higher bit counts\n",
" print(f'nbits={nbits}')\n",
" \n",
" def calculate_ser(v):\n",
" params = dict(default_params)\n",
" params['signal_amplitude'] = v\n",
" params['nbits'] = nbits\n",
" sers, brs = [], []\n",
" for i in range(sample_reps):\n",
" ser, br = run_ser_test(**params, sample_duration=sample_duration, print=noprint, seed=np.random.randint(0xffffffff))\n",
" sers.append(ser)\n",
" brs.append(br)\n",
" sers, brs = np.array(sers), np.array(brs)\n",
" ser = np.mean(sers)\n",
" print(f'signal_amplitude={v:<.5f}: ser={ser:<.5f} ±{np.std(sers):<.5f}, br={np.mean(brs):<.5f}')\n",
" return ser\n",
" \n",
" vs = 0.2e-3 * 10 ** np.linspace(0, 1.0, sweep_points)\n",
" with Pool(6) as p:\n",
" data = p.map(calculate_ser, vs)\n",
" \n",
" ax.plot(vs, data, label=f'{nbits} bit')\n",
"ax.grid()\n",
"ax.set_xlabel('Amplitude in mHz')\n",
"ax.set_ylabel('Symbol error rate')\n",
"ax.legend()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "labenv",
"language": "python",
"name": "labenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|