1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/* Megumin LED display firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "adc.h"
#include "serial.h"
volatile unsigned int sys_time_seconds = 0;
void update_leds() {
}
volatile union {
struct {
unsigned int usb, ocxo, error, _nc1, _nc2, _nc3, pps, sd_card;
};
unsigned int arr[0];
} leds;
int main(void) {
RCC->CR |= RCC_CR_HSEON;
while (!(RCC->CR&RCC_CR_HSERDY));
RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
RCC->CFGR |= ((6-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x6 -> 48.0MHz */
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR&RCC_CR_PLLRDY));
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock/10); /* 100ms interval */
NVIC_EnableIRQ(SysTick_IRQn);
NVIC_SetPriority(SysTick_IRQn, 3<<5);
/* Turn on lots of neat things */
RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN;
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN | RCC_APB2ENR_SPI1EN | RCC_APB2ENR_DBGMCUEN |\
RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM16EN | RCC_APB2ENR_USART1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
GPIOA->MODER |=
(3<<GPIO_MODER_MODER2_Pos) /* PA2 - LINE_MEAS */
| (1<<GPIO_MODER_MODER3_Pos) /* PA3 - LED_STB */
| (1<<GPIO_MODER_MODER4_Pos) /* PA4 - SD_CS */
| (2<<GPIO_MODER_MODER5_Pos) /* PA5 - SCK */
| (2<<GPIO_MODER_MODER6_Pos) /* PA6 - MISO */
| (2<<GPIO_MODER_MODER7_Pos) /* PA7 - MOSI */
| (2<<GPIO_MODER_MODER9_Pos) /* PA9 - HOST_RX */
| (2<<GPIO_MODER_MODER10_Pos);/* PA10 - HOST_TX */
/* Set shift register IO GPIO output speed */
GPIOA->OSPEEDR |=
(2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* LED_STB */
| (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* SD_CS */
| (2<<GPIO_OSPEEDR_OSPEEDR5_Pos) /* SCK */
| (2<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* MOSI */
| (2<<GPIO_OSPEEDR_OSPEEDR9_Pos); /* HOST_RX */
GPIOA->AFR[0] = (0<<GPIO_AFRL_AFRL5_Pos) | (0<<GPIO_AFRL_AFRL6_Pos) | (0<<GPIO_AFRL_AFRL7_Pos);
GPIOA->AFR[1] = (1<<8) | (1<<4);
GPIOB->MODER |=
(0<<GPIO_MODER_MODER1_Pos); /* PB0 - LINE_POL */
SPI1->CR1 =
SPI_CR1_SSM
| SPI_CR1_SSI
| (4<<SPI_CR1_BR_Pos) /* /32 ~1.5MHz */
| SPI_CR1_MSTR;
SPI1->CR2 = (7<<SPI_CR2_DS_Pos);
SPI1->CR1 |= SPI_CR1_SPE;
NVIC_EnableIRQ(SPI1_IRQn);
NVIC_SetPriority(SPI1_IRQn, 2<<5);
TIM16->CR2 = 0;
TIM16->DIER = TIM_DIER_UIE;
TIM16->PSC = 48-1; /* 1us */
TIM16->ARR = 1000-1; /* 1ms */
TIM16->CR1 = TIM_CR1_CEN;
NVIC_EnableIRQ(TIM16_IRQn);
NVIC_SetPriority(TIM16_IRQn, 2<<5);
adc_configure_scope_mode(1000000);
usart_dma_init();
while (42) {
//int pol = GPIOB->IDR & (1<<1); /* Sample current polarity */
//leds.error = pol ? 100 : 0;
//for (int i=0; i<10000; i++) ;
//leds.error = 100;
}
}
void SPI1_IRQHandler(void) {
if (SPI1->SR & SPI_SR_TXE) {
/* LED_STB */
GPIOA->BSRR = 1<<3;
SPI1->CR2 &= ~SPI_CR2_TXEIE;
}
}
void TIM16_IRQHandler(void) {
static int leds_update_counter = 0;
if (TIM16->SR & TIM_SR_UIF) {
TIM16->SR &= ~TIM_SR_UIF;
uint8_t bits = 0, mask = 1;
for (size_t i=0; i<sizeof(leds)/sizeof(leds.arr[0]); i++) {
if (leds.arr[i]) {
leds.arr[i]--;
bits |= mask;
}
mask <<= 1;
}
if (leds_update_counter++ == 10) {
leds_update_counter = 0;
/* Workaround for SPI hardware bug: Even if configured to 8-bit mode, the SPI will do a 16-bit transfer if the
* data register is accessed through a 16-bit write. Unfortunately, the STMCube register defs define DR as an
* uint16_t, so we have to do some magic here to force an 8-bit write. */
*((volatile uint8_t*)&(SPI1->DR)) = bits;
SPI1->CR2 |= SPI_CR2_TXEIE;
GPIOA->BRR = 1<<3;
}
}
}
void NMI_Handler(void) {
asm volatile ("bkpt");
}
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
asm volatile ("bkpt");
}
void SVC_Handler(void) {
asm volatile ("bkpt");
}
void PendSV_Handler(void) {
asm volatile ("bkpt");
}
void SysTick_Handler(void) {
static int n = 0;
if (n++ == 10) {
n = 0;
sys_time_seconds++;
leds.pps = 100; /* ms */
}
}
|