summaryrefslogtreecommitdiff
path: root/controller/fw/src/test_pyldpc_utils.py
blob: 6b145325e853a722c9289740896e5a5e4531b55f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""Conversion tools."""
import math
import numbers
import numpy as np
import scipy
from scipy.stats import norm
pi = math.pi


def int2bitarray(n, k):
    """Change an array's base from int (base 10) to binary (base 2)."""
    binary_string = bin(n)
    length = len(binary_string)
    bitarray = np.zeros(k, 'int')
    for i in range(length - 2):
        bitarray[k - i - 1] = int(binary_string[length - i - 1])

    return bitarray


def bitarray2int(bitarray):
    """Change array's base from binary (base 2) to int (base 10)."""
    bitstring = "".join([str(i) for i in bitarray])

    return int(bitstring, 2)


def binaryproduct(X, Y):
    """Compute a matrix-matrix / vector product in Z/2Z."""
    A = X.dot(Y)
    try:
        A = A.toarray()
    except AttributeError:
        pass
    return A % 2


def gaussjordan(X, change=0):
    """Compute the binary row reduced echelon form of X.

    Parameters
    ----------
    X: array (m, n)
    change : boolean (default, False). If True returns the inverse transform

    Returns
    -------
    if `change` == 'True':
        A: array (m, n). row reduced form of X.
        P: tranformations applied to the identity
    else:
        A: array (m, n). row reduced form of X.

    """
    A = np.copy(X)
    m, n = A.shape

    if change:
        P = np.identity(m).astype(int)

    pivot_old = -1
    for j in range(n):
        filtre_down = A[pivot_old+1:m, j]
        pivot = np.argmax(filtre_down)+pivot_old+1

        if A[pivot, j]:
            pivot_old += 1
            if pivot_old != pivot:
                aux = np.copy(A[pivot, :])
                A[pivot, :] = A[pivot_old, :]
                A[pivot_old, :] = aux
                if change:
                    aux = np.copy(P[pivot, :])
                    P[pivot, :] = P[pivot_old, :]
                    P[pivot_old, :] = aux

            for i in range(m):
                if i != pivot_old and A[i, j]:
                    if change:
                        P[i, :] = abs(P[i, :]-P[pivot_old, :])
                    A[i, :] = abs(A[i, :]-A[pivot_old, :])

        if pivot_old == m-1:
            break

    if change:
        return A, P
    return A


def binaryrank(X):
    """Compute rank of a binary Matrix using Gauss-Jordan algorithm."""
    A = np.copy(X)
    m, n = A.shape

    A = gaussjordan(A)

    return sum([a.any() for a in A])


def f1(y, sigma):
    """Compute normal density N(1,sigma)."""
    f = norm.pdf(y, loc=1, scale=sigma)
    return f


def fm1(y, sigma):
    """Compute normal density N(-1,sigma)."""

    f = norm.pdf(y, loc=-1, scale=sigma)
    return f


def bitsandnodes(H):
    """Return bits and nodes of a parity-check matrix H."""
    if type(H) != scipy.sparse.csr_matrix:
        bits_indices, bits = np.where(H)
        nodes_indices, nodes = np.where(H.T)
    else:
        bits_indices, bits = scipy.sparse.find(H)[:2]
        nodes_indices, nodes = scipy.sparse.find(H.T)[:2]
    bits_histogram = np.bincount(bits_indices)
    nodes_histogram = np.bincount(nodes_indices)

    return bits_histogram, bits, nodes_histogram, nodes


def incode(H, x):
    """Compute Binary Product of H and x."""
    return (binaryproduct(H, x) == 0).all()


def gausselimination(A, b):
    """Solve linear system in Z/2Z via Gauss Gauss elimination."""
    if type(A) == scipy.sparse.csr_matrix:
        A = A.toarray().copy()
    else:
        A = A.copy()
    b = b.copy()
    n, k = A.shape

    for j in range(min(k, n)):
        listedepivots = [i for i in range(j, n) if A[i, j]]
        if len(listedepivots):
            pivot = np.min(listedepivots)
        else:
            continue
        if pivot != j:
            aux = (A[j, :]).copy()
            A[j, :] = A[pivot, :]
            A[pivot, :] = aux

            aux = b[j].copy()
            b[j] = b[pivot]
            b[pivot] = aux

        for i in range(j+1, n):
            if A[i, j]:
                A[i, :] = abs(A[i, :]-A[j, :])
                b[i] = abs(b[i]-b[j])

    return A, b


def check_random_state(seed):
    """Turn seed into a np.random.RandomState instance
    Parameters
    ----------
    seed : None | int | instance of RandomState
        If seed is None, return the RandomState singleton used by np.random.
        If seed is an int, return a new RandomState instance seeded with seed.
        If seed is already a RandomState instance, return it.
        Otherwise raise ValueError.
    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, numbers.Integral):
        return np.random.RandomState(seed)
    if isinstance(seed, np.random.RandomState):
        return seed
    raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
                     ' instance' % seed)