1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
"""Decoding module."""
import numpy as np
import warnings
import test_pyldpc_utils as utils
from numba import njit, int64, types, float64
np.set_printoptions(linewidth=180, threshold=1000, edgeitems=20)
def decode(H, y, snr, maxiter=100):
"""Decode a Gaussian noise corrupted n bits message using BP algorithm.
Decoding is performed in parallel if multiple codewords are passed in y.
Parameters
----------
H: array (n_equations, n_code). Decoding matrix H.
y: array (n_code, n_messages) or (n_code,). Received message(s) in the
codeword space.
maxiter: int. Maximum number of iterations of the BP algorithm.
Returns
-------
x: array (n_code,) or (n_code, n_messages) the solutions in the
codeword space.
"""
m, n = H.shape
bits_hist, bits_values, nodes_hist, nodes_values = utils.bitsandnodes(H)
var = 10 ** (-snr / 10)
if y.ndim == 1:
y = y[:, None]
# step 0: initialization
Lc = 2 * y / var
_, n_messages = y.shape
Lq = np.zeros(shape=(m, n, n_messages))
Lr = np.zeros(shape=(m, n, n_messages))
for n_iter in range(maxiter):
#print(f'============================ iteration {n_iter} ============================')
Lq, Lr, L_posteriori = _logbp_numba(bits_hist, bits_values, nodes_hist,
nodes_values, Lc, Lq, Lr, n_iter)
#print("Lq=", Lq.flatten())
#print("Lr=", Lr.flatten())
#print("L_posteriori=", L_posteriori.flatten())
#print('L_posteriori=[')
#for row in L_posteriori.reshape([-1, 16]):
# for val in row:
# cc = '\033[91m' if val < 0 else ('\033[92m' if val > 0 else '\033[94m')
# print(f"{cc}{val: 012.6g}\033[38;5;240m", end=', ')
# print()
x = np.array(L_posteriori <= 0).astype(int)
product = utils.incode(H, x)
if product:
print(f'found, n_iter={n_iter}')
break
if n_iter == maxiter - 1:
warnings.warn("""Decoding stopped before convergence. You may want
to increase maxiter""")
return x.squeeze()
output_type_log2 = types.Tuple((float64[:, :, :], float64[:, :, :],
float64[:, :]))
#@njit(output_type_log2(int64[:], int64[:], int64[:], int64[:], float64[:, :],
# float64[:, :, :], float64[:, :, :], int64), cache=True)
def _logbp_numba(bits_hist, bits_values, nodes_hist, nodes_values, Lc, Lq, Lr,
n_iter):
"""Perform inner ext LogBP solver."""
m, n, n_messages = Lr.shape
# step 1 : Horizontal
bits_counter = 0
nodes_counter = 0
for i in range(m):
#print(f'=== i={i}')
ff = bits_hist[i]
ni = bits_values[bits_counter: bits_counter + ff]
bits_counter += ff
for j_iter, j in enumerate(ni):
nij = ni[:]
#print(f'\033[38;5;240mj={j:04d}', end=' ')
X = np.ones(n_messages)
if n_iter == 0:
for kk in range(len(nij)):
if nij[kk] != j:
lcv = Lc[nij[kk],0]
lcc = '\033[91m' if lcv < 0 else ('\033[92m' if lcv > 0 else '\033[94m')
#print(f'nij={nij[kk]:04d} Lc={lcc}{lcv:> 8f}\033[38;5;240m', end=' ')
X *= np.tanh(0.5 * Lc[nij[kk]])
else:
for kk in range(len(nij)):
if nij[kk] != j:
X *= np.tanh(0.5 * Lq[i, nij[kk]])
#print(f'\n==== {i:03d} {j_iter:01d} {X[0]:> 8f}')
num = 1 + X
denom = 1 - X
for ll in range(n_messages):
if num[ll] == 0:
Lr[i, j, ll] = -1
elif denom[ll] == 0:
Lr[i, j, ll] = 1
else:
Lr[i, j, ll] = np.log(num[ll] / denom[ll])
# step 2 : Vertical
for j in range(n):
ff = nodes_hist[j]
mj = nodes_values[bits_counter: nodes_counter + ff]
nodes_counter += ff
for i in mj:
mji = mj[:]
Lq[i, j] = Lc[j]
for kk in range(len(mji)):
if mji[kk] != i:
Lq[i, j] += Lr[mji[kk], j]
# LLR a posteriori:
L_posteriori = np.zeros((n, n_messages))
nodes_counter = 0
for j in range(n):
ff = nodes_hist[j]
mj = nodes_values[bits_counter: nodes_counter + ff]
nodes_counter += ff
L_posteriori[j] = Lc[j] + Lr[mj, j].sum(axis=0)
return Lq, Lr, L_posteriori
def get_message(tG, x):
"""Compute the original `n_bits` message from a `n_code` codeword `x`.
Parameters
----------
tG: array (n_code, n_bits) coding matrix tG.
x: array (n_code,) decoded codeword of length `n_code`.
Returns
-------
message: array (n_bits,). Original binary message.
"""
n, k = tG.shape
rtG, rx = utils.gausselimination(tG, x)
message = np.zeros(k).astype(int)
message[k - 1] = rx[k - 1]
for i in reversed(range(k - 1)):
message[i] = rx[i]
message[i] -= utils.binaryproduct(rtG[i, list(range(i+1, k))],
message[list(range(i+1, k))])
return abs(message)
|