1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
#include <unistd.h>
#include <stdbool.h>
#include <math.h>
#include <arm_math.h>
#include "freq_meas.h"
#include "sr_global.h"
#include "dsss_demod.h"
#include "simulation.h"
#include "generated/dsss_gold_code.h"
#include "generated/dsss_butter_filter.h"
/* Generated CWT wavelet LUT */
extern const float * const dsss_cwt_wavelet_table;
struct iir_biquad cwt_filter_bq[DSSS_FILTER_CLEN] = {DSSS_FILTER_COEFF};
float gold_correlate_step(const size_t ncode, const float a[DSSS_CORRELATION_LENGTH], size_t offx, bool debug);
float cwt_convolve_step(const float v[DSSS_WAVELET_LUT_SIZE], size_t offx);
float run_iir(const float x, const int order, const struct iir_biquad q[order], struct iir_biquad_state st[order]);
float run_biquad(float x, const struct iir_biquad *const q, struct iir_biquad_state *const restrict st);
void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug);
#ifdef SIMULATION
void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug) {
if (!debug)
return;
if (index) {
DEBUG_PRINTN(" %16s [", "");
for (size_t i=0; i<len; i++)
DEBUG_PRINTN("%8d ", i);
DEBUG_PRINTN("]\n");
}
DEBUG_PRINTN(" %16s: [", name);
for (size_t i=0; i<len; i++)
DEBUG_PRINTN("%8.5f, ", data[i*stride]);
DEBUG_PRINTN("]\n");
}
#else
void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug) {}
#endif
#ifdef SIMULATION
void dsss_demod_step(struct dsss_demod_state *st, float new_value, size_t sim_pos, int record_channel) {
bool debug = (record_channel == -1)
&& (sim_pos > 1000)
&& (sim_pos % DSSS_CORRELATION_LENGTH == DSSS_CORRELATION_LENGTH-1);
if (debug) DEBUG_PRINT("Iteration %zd: signal=%f", sim_pos, new_value);
#else
void dsss_demod_step(struct dsss_demod_state *st, float new_value) {
#endif
//const float peak_group_threshold = 0.05 * DSSS_CORRELATION_LENGTH;
//const float hole_patching_threshold = 0.01 * DSSS_CORRELATION_LENGTH;
st->signal[st->signal_wpos] = new_value;
st->signal_wpos = (st->signal_wpos + 1) % ARRAY_LENGTH(st->signal);
/* use new, incremented wpos for gold_correlate_step as first element of old data in ring buffer */
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
st->correlation[i][st->correlation_wpos] = gold_correlate_step(i, st->signal, st->signal_wpos, false);
debug_print_vector("correlation",
DSSS_GOLD_CODE_COUNT, &st->correlation[0][st->correlation_wpos], DSSS_WAVELET_LUT_SIZE, true, debug);
st->correlation_wpos = (st->correlation_wpos + 1) % ARRAY_LENGTH(st->correlation[0]);
float cwt[DSSS_GOLD_CODE_COUNT];
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
cwt[i] = cwt_convolve_step(st->correlation[i], st->correlation_wpos);
debug_print_vector("cwt", DSSS_GOLD_CODE_COUNT, cwt, 1, false, debug);
float avg[DSSS_GOLD_CODE_COUNT];
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
avg[i] = run_iir(fabs(cwt[i]), ARRAY_LENGTH(cwt_filter_bq), cwt_filter_bq, st->cwt_filter[i].st);
debug_print_vector("avg", DSSS_GOLD_CODE_COUNT, avg, 1, false, debug);
if (record_channel != -1)
DEBUG_PRINTN("%f, %f, %f\n",
st->correlation[record_channel][st->correlation_wpos], cwt[record_channel], avg[record_channel]);
float max_val = st->group.max;
int max_ch = st->group.max_ch;
int max_idx = st->group.max_idx + 1;
bool found = false;
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++) {
float val = cwt[i] / avg[i];
if (fabs(val) > DSSS_THESHOLD_FACTOR)
found = true;
if (fabs(val) > fabs(max_val)) {
max_val = val;
max_ch = i;
max_idx = st->group.len;
}
}
if (found) {
/* Continue ongoing group */
st->group.len++;
st->group.max = max_val;
st->group.max_ch = max_ch;
st->group.max_idx = max_idx;
return;
}
if (st->group.len == 0)
/* We're between groups */
return;
/* A group ended. Process result. */
if (record_channel == -1)
DEBUG_PRINT("GROUP FOUND: %8d len=%3d max=%f ch=%d offx=%d",
sim_pos, st->group.len, st->group.max, st->group.max_ch, st->group.max_idx);
/* reset grouping state */
st->group.len = 0;
st->group.max_idx = 0;
st->group.max_ch = 0;
st->group.max = 0.0f;
}
float run_iir(const float x, const int order, const struct iir_biquad q[order], struct iir_biquad_state st[order]) {
float intermediate = x;
for (int i=0; i<(order+1)/2; i++)
intermediate = run_biquad(intermediate, &q[i], &st[i]);
return intermediate;
}
float run_biquad(float x, const struct iir_biquad *const q, struct iir_biquad_state *const restrict st) {
/* direct form 2, see https://en.wikipedia.org/wiki/Digital_biquad_filter */
float intermediate = x + st->reg[0] * -q->a[0] + st->reg[1] * -q->a[1];
float out = intermediate * q->b[0] + st->reg[0] * q->b[1] + st->reg[1] * q->b[2];
st->reg[1] = st->reg[0];
st->reg[0] = intermediate;
return out;
}
float cwt_convolve_step(const float v[DSSS_WAVELET_LUT_SIZE], size_t offx) {
float sum = 0.0f;
for (ssize_t j=0; j<DSSS_WAVELET_LUT_SIZE; j++) {
/* Our wavelet is symmetric so convolution and correlation are identical. Use correlation here for ease of
* implementation */
sum += v[(offx + j) % DSSS_WAVELET_LUT_SIZE] * dsss_cwt_wavelet_table[j];
//DEBUG_PRINT(" j=%d v=%f w=%f", j, v[(offx + j) % DSSS_WAVELET_LUT_SIZE], dsss_cwt_wavelet_table[j]);
}
return sum;
}
/* Compute last element of correlation for input [a] and hard-coded gold sequences.
*
* This is intened to be used once for each new incoming sample in [a]. It expects [a] to be of length
* [dsss_correlation_length] and produces the one sample where both the reference sequence and the input fully overlap.
* This is equivalent to "valid" mode in numpy's terminology[0].
*
* [0] https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html
*/
float gold_correlate_step(const size_t ncode, const float a[DSSS_CORRELATION_LENGTH], size_t offx, bool debug) {
float acc_outer = 0.0f;
uint8_t table_byte = 0;
if (debug) DEBUG_PRINTN("Correlate n=%d: ", ncode);
for (size_t i=0; i<DSSS_GOLD_CODE_LENGTH; i++) {
if ((i&7) == 0) {
table_byte = dsss_gold_code_table[ncode][i>>3]; /* Fetch sequence table item */
if (debug) DEBUG_PRINTN("|");
}
int bv = table_byte & (0x80>>(i&7)); /* Extract bit */
bv = !!bv*2 - 1; /* Map 0, 1 -> -1, 1 */
if (debug) DEBUG_PRINTN("%s%d\033[0m", bv == 1 ? "\033[92m" : "\033[91m", (bv+1)/2);
float acc_inner = 0.0f;
for (size_t j=0; j<DSSS_DECIMATION; j++)
acc_inner += a[(offx + i*DSSS_DECIMATION + j) % DSSS_CORRELATION_LENGTH]; /* Multiply item */
//if (debug) DEBUG_PRINTN("%.2f ", acc_inner);
acc_outer += acc_inner * bv;
}
if (debug) DEBUG_PRINTN("\n");
return acc_outer / DSSS_CORRELATION_LENGTH;
}
|