#!/usr/bin/env python
# coding: utf-8

# In[17]:


import numpy as np
import numbers
import math
from scipy import signal as sig
import scipy.fftpack
import random
import struct
import random
import ipywidgets
import itertools
import datetime
import multiprocessing
import traceback
from collections import defaultdict
import json

from tqdm import tqdm
import colorednoise

np.set_printoptions(linewidth=240)



sampling_rate = 10 # sp/s


# In[4]:


# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py
preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]],
                        8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], 
                        10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]}

def gen_gold(seq1, seq2):
    gold = [seq1, seq2]
    for shift in range(len(seq1)):
        gold.append(seq1 ^ np.roll(seq2, -shift))
    return gold

def gold(n):
    n = int(n)
    if not n in preferred_pairs:
        raise KeyError('preferred pairs for %s bits unknown' % str(n))
    t0, t1 = preferred_pairs[n]
    (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1)
    return gen_gold(seq0, seq1)


# In[5]:


def modulate(data, nbits=5):
    # 0, 1 -> -1, 1
    mask = np.array(gold(nbits))*2 - 1
    
    sel = mask[data>>1]
    data_lsb_centered = ((data&1)*2 - 1)

    signal = (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2
    return np.hstack([ np.zeros(len(mask)), signal, np.zeros(len(mask)) ])


# In[6]:


def correlate(sequence, nbits=5, decimation=1, mask_filter=lambda x: x):
    mask = np.tile(np.array(gold(nbits))[:,:,np.newaxis]*2 - 1, (1, 1, decimation)).reshape((2**nbits + 1, (2**nbits-1) * decimation))

    sequence -= np.mean(sequence)
    
    return np.array([np.correlate(sequence, row, mode='full') for row in mask])


# In[7]:


def load_noise_meas_params(capture_file):
    with open(capture_file, 'rb') as f:
        meas_data = np.copy(np.frombuffer(f.read(), dtype='float32'))
        print('mean:', np.mean(meas_data), 'len:', len(meas_data))
        meas_data -= np.mean(meas_data)
        return {'meas_data': meas_data}

def mains_noise_measured(n, meas_data):
    last_valid = len(meas_data) - n
    start = np.random.randint(last_valid)
    return meas_data[start:start+n]

def load_noise_synth_params(specfile):
    with open(specfile) as f:
        d = json.load(f)
        return {'spl_x': np.linspace(*d['x_spec']),
                'spl_N': d['x_spec'][2],
                'psd_spl': (d['t'], d['c'], d['k']) }

def mains_noise_synthetic(n, psd_spl, spl_N, spl_x):
    noise = np.random.normal(size=spl_N) * 2
    spec = scipy.fftpack.fft(noise) **2

    spec *= np.exp(scipy.interpolate.splev(spl_x, psd_spl))

    spec **= 1/2
    
    renoise = scipy.fftpack.ifft(spec)
    return renoise[10000:][:n]

# In[8]:


def generate_test_signal(duration, nbits=6, signal_amplitude=2.0e-3, decimation=10, seed=0):
    test_data = np.random.RandomState(seed=seed).randint(0, 2 * (2**nbits), duration)
    
    signal = np.repeat(modulate(test_data, nbits) * 2.0 - 1, decimation) * signal_amplitude
    noise = mains_noise(len(signal))
    
    return test_data, signal + noise


# In[9]:


nonlinear_distance = lambda x: 100**(2*np.abs(0.5-x%1)) / (np.abs(x)+3)**2 * (np.clip(np.abs(x), 0, 0.5) * 2)**5

# In[11]:


noprint = lambda *args, **kwargs: None


# In[12]:


def run_ser_test(sample_duration=128, nbits=6, signal_amplitude=2.0e-3, decimation=10, threshold_factor=4.0, power_avg_width=2.5, max_lookahead=6.5, pol_score_factor=1.0, seed=0, ax=None, print=print, ser_maxshift=3, debug_range=None):

    test_data, signal = generate_test_signal(sample_duration, nbits, signal_amplitude, decimation, seed)
    cor_an = correlate(signal, nbits=nbits, decimation=decimation)

    power_avg_width = int(power_avg_width * (2**nbits - 1) * decimation)

    bit_period = (2**nbits) * decimation
    peak_group_threshold = 0.05 * bit_period
    hole_patching_threshold = 0.01 * bit_period
    
    cwt_res = np.array([ sig.cwt(row, sig.ricker, [0.73 * decimation]).flatten() for row in cor_an ])
    if ax:
        ax.grid()
        ax.plot(cwt_res.T)
        
    th = np.array([ np.convolve(np.abs(row), np.ones((power_avg_width,))/power_avg_width, mode='same') for row in cwt_res ])

    def compare_th(elem):
        idx, (th, val) = elem
        #print('compare_th:', th.shape, val.shape)
        return np.any(np.abs(val) > th*threshold_factor)

    peaks = [ list(group) for val, group in itertools.groupby(enumerate(zip(th.T, cwt_res.T)), compare_th) if val ]
    peaks_processed = []
    peak_group = []
    for group in peaks:
        pos = np.mean([idx for idx, _val in group])
        #pol = np.mean([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group])
        pol = max([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group], key=abs)
        pol_idx = np.argmax(np.bincount([ np.argmax(np.abs(val)) for _idx, (_th, val) in group ]))
        peaks_processed.append((pos, pol, pol_idx))
        #print(f'group', pos, pol, pol_idx)
        #for pol, (_idx, (_th, val)) in zip([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group], group):
        #    print('    ', pol, val)
        #if ax:
        #    ax.axvline(pos, color='cyan', alpha=0.3)
        msg = f'peak at {pos} = {pol} idx {pol_idx}: '

        if peak_group:
            msg += f'continuing previous group: {peak_group[-1]},'
            group_start, last_pos, last_pol, peak_pos, last_pol_idx = peak_group[-1]

            if abs(pol) > abs(last_pol):
                msg += 'larger, '
                if ax:
                    ax.axvline(pos, color='magenta', alpha=0.5)
                peak_group[-1] = (group_start, pos, pol, pos, pol_idx)
                
            else:
                msg += 'smaller, '
                if ax:
                    ax.axvline(pos, color='blue', alpha=0.5)
                peak_group[-1] = (group_start, pos, last_pol, peak_pos, last_pol_idx)
        else:
            last_pos = None
        
        if not peak_group or pos - last_pos > peak_group_threshold:
            msg += 'terminating, '
            if peak_group:
                msg += f'previous group: {peak_group[-1]},'
                peak_pos = peak_group[-1][3]
                if ax:
                    ax.axvline(peak_pos, color='red', alpha=0.6)
                #ax3.text(peak_pos-20, 2.0, f'{0 if pol < 0 else 1}', horizontalalignment='right', verticalalignment='center', color='black')

            msg += f'new group: {(pos, pos, pol, pos, pol_idx)} '
            peak_group.append((pos, pos, pol, pos, pol_idx))
            if ax:
                ax.axvline(pos, color='cyan', alpha=0.5)
        
        if debug_range:
            low, high = debug_range
            if low < pos < high:
                print(msg)
                print(group)

    avg_peak = np.mean(np.abs(np.array([last_pol for _1, _2, last_pol, _3, _4 in peak_group])))
    print('avg_peak', avg_peak)

    noprint = lambda *args, **kwargs: None
    def mle_decode(peak_groups, print=print):
        peak_groups = [ (pos, pol, idx) for _1, _2, pol, pos, idx in peak_groups ]
        candidates = [ (abs(pol)/avg_peak, [(pos, pol, idx)]) for pos, pol, idx in peak_groups if pos < bit_period*2.5 ]

        while candidates:
            chain_candidates = []
            for chain_score, chain in candidates:
                pos, ampl, _idx = chain[-1]
                score_fun = lambda pos, npos, npol: pol_score_factor*abs(npol)/avg_peak + nonlinear_distance((npos-pos)/bit_period)
                next_candidates = sorted([ (score_fun(pos, npos, npol), npos, npol, nidx) for npos, npol, nidx in peak_groups if pos < npos < pos + bit_period*max_lookahead ], reverse=True)

                print(f'    candidates for {pos}, {ampl}:')
                for score, npos, npol, nidx in next_candidates:
                    print(f'        {score:.4f} {npos:.2f} {npol:.2f} {nidx:.2f}')

                nch, cor_len = cor_an.shape
                if cor_len - pos < 1.5*bit_period or not next_candidates:
                    score = sum(score_fun(opos, npos, npol) for (opos, _opol, _oidx), (npos, npol, _nidx) in zip(chain[:-1], chain[1:])) / len(chain)
                    yield score, chain

                else:
                    print('extending')
                    for score, npos, npol, nidx in next_candidates[:3]:
                        if score > 0.5:
                            new_chain_score = chain_score * 0.9 + score * 0.1
                            chain_candidates.append((new_chain_score, chain + [(npos, npol, nidx)]))
            print('chain candidates:')
            for score, chain in sorted(chain_candidates, reverse=True):
                print('    ', [(score, [(f'{pos:.2f}', f'{pol:.2f}') for pos, pol, _idx in chain])])
            candidates = [ (chain_score, chain) for chain_score, chain in sorted(chain_candidates, reverse=True)[:10] ]

    res = sorted(mle_decode(peak_group, print=noprint), reverse=True)
    #for i, (score, chain) in enumerate(res):
    #    print(f'Chain {i}@{score:.4f}: {chain}')
    (_score, chain), *_ = res

    def viz(chain, peaks):
        last_pos = None
        for pos, pol, nidx in chain:
            if last_pos:
                delta = int(round((pos - last_pos) / bit_period))
                if delta > 1:
                    print(f'skipped {delta-1} symbols at {pos}/{last_pos}')
                    
                    # Hole patching routine
                    for i in range(1, delta):
                        est_pos = last_pos + (pos - last_pos) / delta * i

                        icandidates = [ (ipos, ipol, iidx) for ipos, ipol, iidx in peaks if abs(est_pos - ipos) < hole_patching_threshold ]
                        if not icandidates:
                            yield None
                            continue

                        ipos, ipol, iidx = max(icandidates, key = lambda e: abs(e[1]))

                        decoded = iidx*2 + (0 if ipol < 0 else 1)
                        print(f'interpolating, last_pos={last_pos}, delta={delta}, pos={pos}, est={est_pos} dec={decoded}')
                        yield decoded
            
            decoded = nidx*2 + (0 if pol < 0 else 1)
            yield decoded
            if ax:
                ax.axvline(pos, color='blue', alpha=0.5)
                ax.text(pos-20, 0.0, f'{decoded}', horizontalalignment='right', verticalalignment='center', color='black')

            last_pos = pos

    decoded = list(viz(chain, peaks_processed))
    print('decoding [ref|dec]:')
    match_result = []
    for shift in range(-ser_maxshift, ser_maxshift):
        msg = f'=== shift = {shift} ===\n'
        failures = -shift if shift < 0 else 0 # we're skipping the first $shift symbols
        a = test_data if shift > 0 else test_data[-shift:]
        b = decoded if shift < 0 else decoded[shift:]
        for i, (ref, found) in enumerate(itertools.zip_longest(a, b)):
            if ref is None: # end of signal
                break
            msg += f'{ref if ref is not None else -1:>3d}|{found if found is not None else -1:>3d} {"✔" if ref==found else "✘" if found else " "}   '
            if ref != found:
                failures += 1
            if i%8 == 7:
                msg += '\n'
        match_result.append((failures, msg))
    failures, msg = min(match_result, key=lambda e: e[0])
    print(msg)
    ser = failures/len(test_data)
    print(f'Symbol error rate e={ser}: {failures}/{len(test_data)}')
    br = sampling_rate / decimation / (2**nbits) * nbits * (1 - ser) * 3600
    print(f'maximum bitrate r={br} b/h')
    return ser, br


# In[13]:


default_params = dict(
        power_avg_width=2.5,
        max_lookahead=6.5)

def calculate_ser(reps, v, seed, nbits, thf, duration, decimation):
    params = dict(default_params)
    params['signal_amplitude'] = v
    params['decimation'] = decimation
    params['nbits'] = nbits
    params['threshold_factor'] = thf

    out = []
    for _rep in range(reps):
        sers, brs = [], []
        try:
            ser, br = run_ser_test(**params, sample_duration=duration, print=noprint, seed=seed)
            out.append((ser, br, None))
        except Exception as e:
            #traceback.print_exc()
            out.append((None, None, f'got {e} seed {seed:08x} params {params}'))
    return out

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--index', type=int, default=0)
parser.add_argument('-b', '--batches', type=int, default=1)
parser.add_argument('-z', '--chunksize', type=int, default=50)
parser.add_argument('-r', '--run-id', type=str, default='default')
group = parser.add_mutually_exclusive_group()
group.add_argument('-s', '--synthetic-noise', nargs='?', const='grid_freq_psd_spl_108pt.json', type=str)
group.add_argument('-m', '--measured-noise', nargs='?', default='fmeas_export_ocxo_2day.bin', const='fmeas_export_ocxo_2day.bin', type=str)
args = parser.parse_args()

# scheduled = [
#         (5,  1.5, 50, 50, 128),
#         (6,  2.0, 50, 50, 128),
#         (6,  2.5, 50, 50, 128),
#         (6,  3.0, 50, 50, 128),
#         (6,  3.5, 50, 50, 128),
#         (6,  4.0, 50, 50, 128),
#         (6,  4.5, 50, 50, 128),
#         (6,  5.0, 50, 50, 128),
#         (6,  5.5, 50, 50, 128),
#         (6,  6.0, 50, 50, 128),
#         (6,  6.5, 50, 50, 128),
#         (6,  7.0, 50, 50, 128),
#         (6,  7.5, 50, 50, 128),
#         (6,  8.0, 50, 50, 128),
#         (6,  8.5, 50, 50, 128),
#         (6,  9.0, 50, 50, 128),
#         (6,  9.5, 50, 50, 128),
#         (6, 10.0, 50, 50, 128),
#        ]
#scheduled = [ (5,  4.0, 50, 70, 100, dec) for dec in list(range(19)) + [int(round(20 * 10**dec)) for dec in np.linspace(0, 0.7, 20)] ] #int(round(1 * 10**dec))) for dec in np.linspace(0, 2, 30) ]

#param_name = 'par101'
#scheduled = [ (nbits,  thf, 100, 30, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ]# int(round(3 * 10**dec)) for dec in np.linspace(0, 2, 30) ]

#param_name = 'par102'
#scheduled = [ (nbits,  thf, 1000, 50, duration, int(round(3 * 10**dec))) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] for dec in np.linspace(0, 2, 30) ]

#param_name = 'par103'
#scheduled = [ (nbits,  thf, 1000, 50, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ]

#param_name = 'par105'
#scheduled = [ (nbits,  thf, 1000, 30, duration, int(round(3 * 10**dec))) for thf in [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0, 2, 30) ]

#param_name = 'dbg106'
#scheduled = [ (nbits,  thf, 20, 15, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128)] ]

#param_name = 'par107'
#scheduled = [ (nbits,  thf, 100, 30, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ]

#param_name = 'par108'
#scheduled = [ (nbits,  thf, 100, 30, duration, int(round(3 * 10**dec))) for thf in [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0, 2, 30) ]

#param_name = 'par110'
#scheduled = [ (nbits,  thf, 100, 30, duration, int(round(1 * 10**dec))) for thf in [3.5, 4.0, 4.5, 5.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0.15, 2, 15) ]

#param_name = 'par111'
#scheduled = [ (nbits,  thf, 100, 30, duration, dec) for thf in [3.5, 4.0, 4.5, 5.0] for nbits, duration in [(5, 128), (6, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ]

# Faster chip duration graph
#param_name = 'par112'
#scheduled = [ (nbits,  thf, 50, 30, duration, dec) for thf in [4.0] for nbits, duration in [(5, 100)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ]

#param_name = 'par113'
#scheduled = [ (nbits,  thf, 100, 30, duration, dec) for thf in [4.0, 4.5, 5.0, 5.5] for nbits, duration in [(5, 128), (6, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ]

#param_name = 'par114'
#scheduled = [ (nbits,  thf, 100, 30, duration, dec) for nbits, thf, duration in [(5, 4.0, 128), (6, 5.0, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ]

# Extra amplitude for 5 and 6 bit graphs NOTE: accidental duplicate param_name, earlier run is above set, later run this one.
#param_name = 'par114'
param_name = 'par115'
scheduled = [ (nbits,  thf, 100, 0.05e-3 * 10 ** np.linspace(0, 3.5, 50), duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128)] ]

random.Random(0).shuffle(scheduled)
batch = scheduled[args.index::args.batches]
print('Parameter set name', param_name)

if args.synthetic_noise is not None:
    noise_params = load_noise_synth_params(args.synthetic_noise)
    mains_noise = lambda n: mains_noise_synthetic(n, **noise_params)
    noise_source = 'synth'
else:
    noise_params = load_noise_meas_params(args.measured_noise)
    mains_noise = lambda n: mains_noise_measured(n, **noise_params)
    noise_source = 'meas'

def chunked(n, size):
    for start in range(0, n, size):
        end = min(reps, start + size)
        yield start, end

results = {}
with tqdm(total = 0) as tq:
    with multiprocessing.Pool(multiprocessing.cpu_count()) as pool:
        #for nbits, thf, reps, points, duration in [(5, 4.0, 50, 25, 128), (6, 4.0, 50, 25, 128), (7, 5.0, 25, 25, 128), (8, 6.0, 25, 25, 64)]:
        #for nbits, thf, reps, points, duration in [(6, 4.5, 5, 25, 128), (6, 5.0, 5, 25, 128)]:
        for nbits, thf, reps, points, duration, decimation in batch:
            st = np.random.RandomState(0)

            if isinstance(points, numbers.Number):
                vs = 0.05e-3 * 10 ** np.linspace(0, 2.0, points)
                points_id = points
            else:
                vs = points
                points_id = len(vs)
            tq.write('scheduled {}reps x {}pt {}b @ th={} t={}sym dec={}sp'.format(reps, points_id, nbits, thf, duration, decimation))
            results[(nbits, thf, reps, points_id, duration, decimation)] = { v:
                    [ pool.apply_async(calculate_ser, (end - start, v, st.randint(0xffffffff), nbits, thf, duration, decimation), callback=lambda _res: tq.update(end - start)) for start, end in chunked(reps, args.chunksize) ]
                    for v in vs }
            tq.total += len(vs) * reps
            tq.refresh()
        
        tq.write(f'scheduled {tq.total} tasks. waiting...')
        pool.close()
        pool.join()

        results = [ (key, [ (v, [ x for res in chunks for x in res.get() ]) for v, chunks in series.items() ]) for key, series in results.items() ]
        tq.write('done')

        #sers, brs = np.array(sers), np.array(brs)
        #ser, std = np.mean(sers), np.std(sers)
        #print(f'signal_amplitude={v:<.5f}: ser={ser:<.5f} ±{std:<.5f}, br={np.mean(brs):<.5f}')
        #return ser, std

with open(f'dsss_experiments_res-{param_name}-{noise_source}-{args.run_id}-{args.index}-{datetime.datetime.now():%Y-%m-%d-%H-%M-%S}.json', 'w') as f:
    json.dump(results, f)
    print(f'Wrote results to {f.name}')