#!/usr/bin/env python # coding: utf-8 # # ROCOF test waveform library # # This is a re-implementation of the ROCOF test waveforms described in https://zenodo.org/record/3559798 # # **This file is exported as a python module and loaded from other notebooks here, so please make sure to re-export when changing it.** # In[ ]: import math import itertools import numpy as np from scipy import signal from matplotlib import pyplot as plt # In[ ]: get_ipython().run_line_magic('matplotlib', 'notebook') # In[ ]: def sample_waveform(generator, duration:"s"=10, sampling_rate:"sp/s"=10000, frequency:"Hz"=50): samples = int(duration*sampling_rate) phases = np.linspace(0, 2*np.pi, 6, endpoint=False) omega_t = np.linspace(phases, phases + 2*np.pi*duration*frequency, samples) fundamental = np.sin(omega_t) return generator(omega_t, fundamental, sampling_rate=sampling_rate, duration=duration, frequency=frequency).swapaxes(0, 1) # In[ ]: def gen_harmonics(amplitudes, phases=[]): return lambda omega_t, fundamental, **_: fundamental + np.sum([ a*np.sin((p if p else 0) + i*omega_t) for i, (a, p) in enumerate(itertools.zip_longest(amplitudes, phases), start=2) ], axis=0) def test_harmonics(): return gen_harmonics([0.02, 0.05, 0.01, 0.06, 0.005, 0.05, 0.005, 0.015, 0.005, 0.035, 0.005, 0.003]) # In[ ]: def gen_interharmonic(amplitudes, ih=[], ih_phase=[]): def gen(omega_t, fundamental, **_): return fundamental + np.sum([ a*np.sin(omega_t * ih + (p if p else 0)) for a, ih, p in itertools.zip_longest(amplitudes, ih, ih_phase) ], axis=0) return gen def test_interharmonics(): return gen_interharmonic([0.1], [15.01401], [np.pi]) # In[ ]: def gen_noise(amplitude=0.2, fmax:'Hz'=4.9e3, fmin:'Hz'=100, filter_order=6): def gen(omega_t, fundamental, sampling_rate, **_): noise = np.random.normal(0, amplitude, fundamental.shape) b, a = signal.butter(filter_order, [fmin, min(fmax, sampling_rate//2-1)], btype='bandpass', fs=sampling_rate) return fundamental + signal.lfilter(b, a, noise, axis=0) return gen def test_noise(): return gen_noise() def test_noise_loud(): return gen_noise(amplitude=0.5, fmin=10) # In[406]: def gen_steps(size_amplitude=0.1, size_phase=0.1*np.pi, steps_per_sec=1): def gen(omega_t, fundamental, duration, **_): n = int(steps_per_sec * duration) indices = np.random.randint(0, len(omega_t), n) amplitudes = np.random.normal(1, size_amplitude, (n, 6)) phases = np.random.normal(0, size_phase, (n, 6)) amplitude = np.ones(omega_t.shape) for start, end, a, p in zip(indices, indices[1:], amplitudes, phases): omega_t[start:end] += p amplitude[start:end] = a return amplitude*np.sin(omega_t) return gen def test_amplitude_steps(): return gen_steps(size_amplitude=0.4, size_phase=0) def test_phase_steps(): return gen_steps(size_amplitude=0, size_phase=0.1) def test_amplitude_and_phase_steps(): return gen_steps(size_amplitude=0.2, size_phase=0.07) # In[418]: def step_gen(shape, stdev, duration, steps_per_sec=1.0, mean=0.0): samples, channels = shape n = int(steps_per_sec * duration) indices = np.random.randint(0, samples, n) phases = np.random.normal(mean, stdev, (n, 6)) amplitude = np.ones((samples, channels)) out = np.zeros(shape) for start, end, a in zip(indices, indices[1:], amplitude): out[start:end] = a return out def gen_chirp(fmin, fmax, period, dwell_time=1.0, amplitude=None, phase_steps=None): def gen(omega_t, fundamental, sampling_rate, duration, **_): samples = int(duration*sampling_rate) phases = np.linspace(0, 2*np.pi, 6, endpoint=False) c = (fmax-fmin)/period t = np.linspace(0, duration, samples) x = np.repeat(np.reshape(2*np.pi*fmin*t, (-1,1)), 6, axis=1) data = (phases + x)[:int(sampling_rate*dwell_time)] current_phase = 2*np.pi*fmin*dwell_time direction = 'up' for idx in range(int(dwell_time*sampling_rate), samples, int(2*period*sampling_rate)): t1 = np.linspace(0, period, int(period*sampling_rate)) t2 = np.linspace(0, period, int(period*sampling_rate)) chirp_phase = np.hstack(( 2*np.pi*(c/2 * t1**2 + fmin * t1), 2*np.pi*(-c/2 * t2**2 + fmax * t2 - (c/2 * period**2 + fmin * period)) )) chirp_phase = np.repeat(np.reshape(chirp_phase, (-1, 1)), 6, axis=1) new = phases + chirp_phase + current_phase current_phase = chirp_phase[-1] data = np.vstack((data, new)) data = data[:len(fundamental)] if phase_steps: (step_amplitude, steps_per_sec) = phase_steps steps = step_gen(data.shape, step_amplitude, duration, steps_per_sec) data += steps if amplitude is None: return np.sin(data) else: return fundamental + amplitude*np.sin(data) return gen def test_close_interharmonics_and_flicker(): return gen_chirp(90.0, 150.0, 10, 1, amplitude=0.1) def test_off_frequency(): # return gen_chirp(48.0, 52.0, 0.25, 1) return gen_chirp(48.0, 52.0, 10, 1) def test_sweep_phase_steps(): return gen_chirp(48.0, 52.0, 10, 1, phase_steps=(0.1, 1)) # return gen_chirp(48.0, 52.0, 0.25, 1, phase_steps=(0.1, 1)) # In[ ]: all_tests = [test_harmonics, test_interharmonics, test_noise, test_noise_loud, test_amplitude_steps, test_phase_steps, test_amplitude_and_phase_steps, test_close_interharmonics_and_flicker, test_off_frequency, test_sweep_phase_steps]