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Abstract— Smart meters have been deployed in many 

countries across the world since early 2000s. The smart 

meter as a key element for the smart grid is expected to 

provide economic, social and environmental benefits for 

multiple stakeholders. There has been much debate over 

the real values of smart meters. One of the key factors that 

will determine the success of smart meters is smart meter 

data analytics which deal with data acquisition, 

transmission, processing, and interpretation that bring 

benefits to all stakeholders. This paper presents a 

comprehensive survey of smart electricity meters and their 

utilization focusing on key aspects of metering process, the 

different stakeholder interests and technologies used to 

satisfy stakeholder interests. Furthermore the paper 

highlights the challenges as well as opportunities arising 

due to the advent of big data and the increasing popularity 

of the cloud environments.  

 

Index Terms— Smart meters, Smart Grids, Data analytics, 

Cloud computing, Artificial Intelligence, Machine learning, Big 

Data, Automated Meter Infrastructure, Privacy, Internet of 

Things. 

 

I. INTRODUCTION 

Smart Energy has been an important conceptual paradigm for 

future energy use. Because of limited non-renewable energy 

resources available on Earth and also high costs of acquiring 

renewable energies (REs), how to make energy use more 

efficient and effective is critical for future social and economic 

developments [1].  

Smart Grids (SGs) have been a key enabler for Smart 

Energy, which refers to power networks that can intelligently 

integrate the behaviors and actions of all stakeholders 

connected to it,  for example, generators, customers and those 

that do both – in order to efficiently deliver sustainable, 

economic and secure electricity supplies. While there are many 

definitions for SGs, one commonly used conceptual 

framework is that of the National Institute of Standards and 

Technology (NIST) which defines seven important domains: 
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bulk generation, transmission, distribution, customers, service 

providers, operations and markets.  

Key technological challenges facing SGs include intermittency 

of RE generation that affects electricity quality; large scale 

networks of small distributed generation mechanisms, for 

example photovoltaic (PV) panels, batteries, wind and solar, 

plug-in hybrid electric vehicles (PHEVs), that result in high 

complexities. Another significant issue is how to use 

Information and Communication Technologies (ICTs), 

advanced electronic and analytic technologies to enhance 

efficiency and cost-effectiveness of energy use.  

Managing SGs to deliver Smart Energy require advanced 

data analytics for acquiring accurate information and 

automated decision support and handling events in a timely 

fashion. Significant progresses have been made for using field 

data obtained from intelligent devices installed in substations, 

feeders and various databases and models across the utility 

enterprises. Some of the examples can be found in [2] and 

references therein. Typical information sources include market 

data, lighting data, power system data, geographical data, 

weather data which can be processed and converted into 

information and knowledge that can be used for state 

estimation, situational awareness, fault detection and 

forewarning, stability assessment, wind or solar forecasting. 

Information acquisition is a key for timely data sensing, 

processing and knowledge extraction. So far, the mostly talked 

about information about power network operations are from 

data collected from intelligent electronic devices installed in 

substations and various parts of the transmission and 

distribution networks.  

In recent years, smart meters are being installed in homes 

and other premises in many regions of the world [3]. USA and 

Europe have been deploying smart meters for many years 

while other regions in the world such as Australia and Canada 

have also started deployment in the last few years. According 

to a recent report [4], due to deployments in 35 emerging 

countries from Central/Eastern Europe, Eurasia, Latin 

America, Middle East/North Africa, South Africa and 

Southeast Asia, the smart meter numbers have more than 

doubled in 2013 compared to 2012. A report by Pike Research 

estimates the global smart meter installations to triple from 

10.3 million in 2011 to 29.9 million units by 2017 [5]. Full 

deployment of smart meters has already been completed in 

Italy and Sweden and mass rollout is ongoing in Finland and 

Spain [6]. This infrastructure, if used properly, can provide 

more than just recording consumption of electricity or a 

decision support tool to support energy usage by users. For 

example, advantages include easier processing of billing, 

automated meter reading and data processing, detection of 

energy losses (possible fraud) and early warning of blackouts, 

fast detection of disturbances in energy supply, possible real-
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time pricing schemes, and demand-response for energy saving 

and efficient use of energy generated.  

 The research and development in smart meters and their 

applications have been progressed rapidly in recent years and 

many methods and techniques have been developed. The 

technological scope relating to smart meters covers a diverse 

range of ICT technologies, such as electronics and 

communication, and there have already been several surveys 

done, e.g. [7] looks into the different applications of smart 

grids focusing on the communication needs and also on 

communication requirements of smart meters for integration 

into power grids. [8] is a comprehensive survey of  

communication technologies for smart meters which could be 

used to satisfy the identified needs. [9] introduces a novel 

smart meter communication technology, [10] examines the 

web and data service aspect of smart meter networks, and [11] 

proposes a framework for smart meter privacy. In this paper, 

we examine these developments from a holistic data analytic 

viewpoint. We will also outline potential future applications 

and challenges that lie ahead. As a foundation for our holistic 

approach the key components of electricity meter intelligence 

is shown as in Figure 1. The three key components capture the 

aspects of data, technology and stakeholders. These aspects 

and the role they play in smart meter intelligence is discussed 

in section 2. 

 
Figure 1: Key components of electricity meter data intelligence 

 

 Section 2 describes the environment in which smart meter 

intelligence can occur. The key technology features in smart 

meters and their capabilities are also described which are then 

used as a stepping stone in to presenting a smart metering 

framework. Sections 3, 4 and 5 present each of the three key 

components of the framework where the data, technology and 

stakeholder aspects are discussed in more detail. Section 6 

describes the key challenges in this area and suggests potential 

solutions. Section 7 concludes the paper. 

II. THE SMART METERING ENVIRONMENT 

To describe the components of smart meter data intelligence, it 

is necessary to understand the environment they exist. Figure 2 

highlights the main environmental factors being the smart grid 

which provides the infrastructure and the stakeholders who 

generate the need for smart metering. Key elements which 

make up the environment are described below. The 

environmental factors presented as Figure 2 provides the 

‘bigger picture’ for metering intelligence and positions the 

components presented in Figure 1 within the smart metering 

environment. The energy usage cycle and stakeholder 

information are based on National Institute of Standards and 

Technology (NIST) classification [12]. A further important 

factor is the recent push towards the integration and coupling 

of multiple systems and components within the smart grid and 

the understanding of the value of interoperability of such 

systems and components [13]. As highlighted in [13], it is 

desirable that multiple systems and components are 

interoperable under the three aspects of organizational, 

informational and technical. It has been proposed that the 

Smart Grid Conceptual Model introduced by NIST be 

extended to cater for the above requirements as well as the 

distributed energy requirements (DER) especially in the 

European Union. The Smart Grid Architectural Model 

(SGAM) Framework has been introduced to address these 

requirements [13]. With interoperability and the flexibility 

with technology independent systems and components the 

environment is set for capturing data in near real time from 

multiple and diverse sources for generating data intelligence. 

 
Figure 2: The environment for smart meter data intelligence 

A. A Framework for Smart Metering 

The key components in Figure 1 are further expanded as a 

framework in Figure 3. A high level view of the framework is 

presented as Figure 3 where the relationships to the 

environment and the key components are highlighted. This 

framework is then further discussed in detail including the 

impact of these different components in Section 3 and 

illustrated as Figure 5. 

 

 
 

Figure 3: Smart meter data intelligence framework 

 

Types of data has been broken down in Figure 3 into 

consumption or measurement, power generation, power quality 

and events such as power failures, meter status etc. These data 

types could be used as aggregates or combined with external 

data such as temperature to derive information for analysis. 

Capturing accurate and relevant data in a timely manner is 

essential for smart metering, which includes the collection, 

transfer and storage (accumulation). Smart meters have 

resulted in a huge increase in the volume as well as types of 

data generated and collected, leading to many potential 

opportunities for generating value from such data. As 

mentioned under the metering process, there are several types 

of data generated measurement or consumption data, 

generation information, power quality and events data. 

Consumption data are the more predictable and regular 

consumption data. With smart meters this could be time-

interval consumption data as well as aggregated values for 
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billing purposes. Time interval data provides more granular 

data opening up possibilities of for trend and cycle analysis 

and different time of day consumption analysis. Time interval 

based consumption also enables to profile consumer behavior 

and relate consumption to temperature changes. This requires 

the integration of smart meter data with external data such as 

weather, geography and consumer information. Events and 

alerts are unscheduled and occur randomly due to unexpected 

situations.  

It could also be seen that the environment is dynamic and 

evolving. Technological capabilities change (improve), 

different types of data become available at faster rates and 

higher volumes and granularity. Stakeholders also become 

more demanding due to life styles, regulations, competition 

etc. thus creating new applications and changing existing ones. 

It becomes imperative that data analytics technologies have to 

keep pace with this changing environment. Considering the 

above, the smart metering framework is proposed as depicted 

as Figure 3 based on a foundation described in Figure 2. Each 

of the three components shown in Figure 4 contributes 

significantly to smart meter data intelligence and as such each 

component is explored in more depth in the following sections. 

 

B. Smart Meters 

The term Smart Meter initially referred to the functionality of 

measuring the electricity used and/or generated and the ability 

to remotely control the supply and cut off when necessary.  It 

was called Automated Meter Reading (AMR) which used one-

way communication and capable of automated monthly reads, 

one way outage (or last gasp) and tamper detection and simple 

load profiling. Over time the AMR capability was extended 

into short term interval (hourly or less) data capture, on 

demand reads and linking into and reading other commodities. 

A major upgrade of functionality occurred after integration of 

the meters with two-way communication technology which has 

been called Advanced Metering Integrated (AMI). The 

upgrade included the incorporation of service switching, time 

based rates, remote programming, power quality measure and 

a dashboard type user interface for real time usage monitoring 

in to the AMR. Although the term smart meter started to be 

used only after the smart grid initiatives, it can be seen that the 

features and functionality of the meters evolved from the 

manually read meters of the past to the AMIs’ with dashboard 

interfaces and two way communication capability. Therefore 

in the current metering environment a meter is expected to 

have the following capabilities to be categorized as a smart 

meter [14]: 

• Real time or near real time capture of electricity usage 

and possibly distributed generation. 

• Providing the possibility of remote and local reading of 

the meter 

• Remote controllability of the meter enabling control 

and even cut off of supply  

• Possibility of linking to other commodity supply (gas, 

water) 

• Ability to capture events such as device status (device 

measured by smart meter), power quality including 

voltage 

• Be interoperable within a smart grid environment (for 

example as specified by NIST and SGAM 

Framework). 

 

The smart meter is the measurement and information 

capture device and in many instances connected to a 

communication device called smart meter gateway to establish 

a secure energy information network. The gateway could 

receive and communicate real time information from supplier, 

be a point of control for appliances, start and stop energy 

supply etc. It could also have a user interface called the  ‘in-

home-display’ (IHD) which displays energy consumption, 

cost, tariffs with real time updates etc. The smart meter can be 

connected to the smart meter gateway which in turn 

communicates with different appliances (washing machine, 

refrigerator etc), local generation as well as heating, 

ventilation and air conditioning (HVAC). The measurements 

and information captured by the smart meter is displayed via 

the IHD. The smart meter could directly communicate the 

consumption information with the utility but the gateway 

communicates with the next level gateway in the smart grid 

infrastructure to pass information for aggregation, demand 

response activities as well as to utilities. As such the system 

consisting of the smart meter, the gateway and the IHD 

communicating in real time with appliances, HVAC 

subsystems and local generation become a key part of a smart 

home infrastructure. Smart meters need an environment where 

they are connected in appropriate structure, and also have the 

capacity to communicate and transfer the information captured 

to collection points. The architecture of the network, the 

capacity and speed of data transfer and communication 

technology will determine whether smart meters generate the 

anticipated value. The smart grid provides the necessary 

environment and infrastructure for the smart meters to function 

and smart meters have been described as the key building 

block of the smart grid [15]. 

One of the key aspects of the smart grid architecture is to 

enable real-time decision making, which is possible only if 

data can be harnessed without latency as it is generated and 

applied towards a specific objective. This real-time or “active” 

data can be harnessed to make just-in-time decisions, such as 

automated outage detection through the last-gasp meter data 

for proactive customer service and proactive self-healing of 

the grid; detection of current load and critical peak conditions 

to initiate automated load curtailment programs to curtail 

power at participating customer premises, or to perform air 

conditioning load curtailment at participating retail 

households. Smart meters can add continuous communications 

if needed so that monitoring can be done in real time, and can 

be used as a gateway to demand response-aware devices and 

"smart sockets" in the home. Within the grid the smart meters 

may also simply replace the devices required at sensing points 

whose large number is not possible for cost and logistic 

reasons, by reporting e.g. voltage and current measurements 
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directly to a data acquisition system such as a smart metering 

platform [16]. 

Smart electricity meter data analytics can assist in the 

distribution network operators in assessment and network 

management. For example, shorter time interval reading (e.g. 5 

minutes) can help derive information of LV network topology 

reconstruction, which in turn help identify loading and voltage 

profiles, connectivity issues, and distributed energy resources 

(DER) impact measurement, which will help HV network and 

assessment operational monitoring. It can also help forecast 

future needs and trends of demand management, network tariff 

optimisation and asset maintenance requirements. 

C. The Smart Metering Process 

 Although there are smart meters of varying technology and 

design, there is a common overall process for data collection, 

communication, analysis leading to decision support. The 

smart metering process in fact could be thought of as part of 

the activation and functioning of the smart grid.  

 
 

Figure 4: The Smart Metering Process [16]  

 

There are some variations according to deployment in different 

countries and regions, but the general smart metering process 

is shown in Figure 4 [17]. The smart meter gathers data locally 

and transfers via a Local Area Network (LAN) to a data 

collection point. There are two key categories of data collected 

as mentioned before. Usage or consumption data refers to the 

actual electricity usage measured in kilowatt Hours (kWh) and 

this is read and transmitted in regular intervals. Depending on 

the particular deployment and region the frequency of data 

collection can vary from 1 hour to every 15 minutes. The 

issues faced with data collection and the implications and 

techniques for making use of this data are further discussed in 

detail in the next sections of this paper. In terms of the 

processing of data, some data processing could be carried out 

at the local collection points, but in most cases the data is 

transferred to the utilities’ central collection center via a Wide 

Area Network (WAN). The data collected at the utility is used 

for a number of business purposes such as billing, network and 

service monitoring, profiling, prediction and planning.  

D. The Stakeholders 

A simple classification is consumers, electricity companies 

(utilities) and environment [18].  In some literature a further 

level of granularity has been added to the electricity company 

class by expanding to metering company (distributor), utility 

company and supplier (retailor) [14].  However, a more 

comprehensive classification would be those by NIST where 

the functionality of the whole energy usage cycle is defined to 

include bulk generation, transmission, distribution, customers, 

service providers, operations and markets. 

 In terms of bulk generation, transmission and distribution, 

which involve meter company and grid company, smart meters 

will complement well with existing infrastructure to provide a 

more accurate and timely view of the energy consumption by 

regions. Events such as suspicious usage areas and potential 

faults will be noticed more easily and on-time actions taken 

subsequently when necessary. It may also enable more 

accurate prediction of electricity flows enabling better network 

maintenance planning.  

Smart meters can enable consumers to directly review their 

electricity usage, even down to the level of separate appliances 

[19], and thus adjust their behaviors to reduce energy cost. 

Customized rate plans are another key benefit to consumers. 

Although not a common practice at present, smart meters 

enable demand response for consumers where limiting or even 

cutting off the supply depending on market situations is 

possible. When all consumers being aware of both 

consumption and production of energy, adapt their energy 

usage during a period of high demand,  high pricing or lower 

supply, more reliable and stable supply, better energy 

awareness, savings and efficiency will be achieved. In 

combination, these activities have been called Demand Side 

Management (DSM) which is essential to really benefit 

consumers [20]. Consumer awareness of the benefits from 

smart meters as well as their functionality will be a key factor 

in the successful adoption of this technology [21]. As 

discussed in [22] another key factor could be the use of 

disaggregation techniques to extract underlying end use and 

appliance level information from an aggregated energy signal.  

For retailers the availability of vast volumes of data which 

could be used to profile and understand customers, their needs 

and behaviors enable better service provision and building 

stronger loyalty. Better consumer awareness is expected to 

result in reduced energy consumption thus reducing the need 

for additional power plants which generate greenhouse gases. 

Restricting and reducing electricity usage during peak periods 

can result in cutting down on the need of using peeker plants 

[23] which generally make higher carbon emissions. Load 

control feature in smart meters enables switching individual 

appliances on and off as required. Retailers could offer this 

feature to customers when the cost of power is very high, while 

distributors could use it when a section of the network is close 

to capacity.  

Table 1 

Stakeholder Type of Benefit 

Distributor/meter 

company 

Accurate, timely view of consumption 

Capture suspicious usage, faults 

Better network maintenance 

Consumer Directly view electricity usage 

Monitor appliance use and consumption 

leading to awareness and better 

electricity usage planning 

Customized rate plans 

Retailer Understand and profile customers for 

targeted service for better loyalty 

Cut down peak usage  

Load control feature offer 
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For example load control could be used switch an air 

conditioner on and off, which could reduce load on the 

network on a very hot day. The stakeholder involvement and 

benefits are summarized in Table 1 under each main 

stakeholder group.  

For operations and markets, the information acquired from 

smart meters will be vital for planning operations, responding 

to market demands, and anticipate changes and disruptions to 

reduce risks to secure energy supply. 

III. DATA FOR METERING INTELLIGENCE 

A smart metering framework has been proposed in the past but 

it only looked at consumer characterization and not holistic 

view of the complete smart metering process and environment 

[24]. The proposed framework is expanded and enhanced in 

this section and presented as Figure 5 consisting of two key 

components. The top depicts the current smart metering 

scenario; the data aspects, stakeholder needs based 

applications and technology tools and algorithms which 

attempt to support the application needs from the available or 

derived data. Current technologies and algorithms are shown 

as core analytics building blocks which are realized using 

different tools.  The bottom part depicts new requirements that 

have arisen due to reasons such as technological 

advancements, change in human behavior and expectations, 

competition, better informed consumers etc. The new 

requirements and limitations of existing tools lead to new 

research and development needs. 

AMI capability provides the base for collecting, transferring 

and accumulating data and information. As shown in Figure 3 

before types of data could be broken down into (power) 

consumption and generation data, power quality measurements 

and event data. Out of these the most widely used 

measurement data in smart metering activities is the detailed 

consumption data consisting of time based (15 minutes to one 

hour), reading of electricity consumption. The other types of 

consumption data are [25]: 

• billing interval data: readings at the beginning and end 

of billing intervals to enable variable pricing 

• aggregate statistical data: monthly consumption, 

comparison with neighbours, usage history etc 

• broadcast data: price change information, critical peak 

time rebates, reliability status etc communicated to 

users 

Event data refers to information that is generated at the 

meters’ end points and includes real time device status, power 

quality information and meter status information. These can be 

made up of attributes such as: source and proxy, severity level 

and category. Source originates the event and the proxy 

captures and communicates. Main event categories include 

meter status, power quality events (voltage sag), meter 

tampering, meter hardware events (low battery) are the. Power 

quality data is generally used in fault analysis to help improve 

reliability. Both pre-fault and post-fault analyses are 

considered as effective techniques of using power quality to 

improve the reliability of a distribution network. Generation 

data provides information such as solar usage which enables to 

identify patterns of electricity usage, effectiveness of 

alternative generation and profile households and suburbs and 

regions. The integration of consumption, event as well as other 

data categories could be useful to understand how the grid 

infrastructure stands up to usage. This can also provide 

insights into capacity planning and budgeting. The fusion of 

external data such as weather, geography with consumption 

can provide useful information for predicting power usage 

[26]. Data supporting such activities have been called derived 

data in Figure 3. 

Data analytics is the process of examining large amounts of 

data of a variety of types to uncover hidden patterns, unknown 

correlations and other useful information. Data analytics is 

used to obtain value from such data captured and information 

derived such that stakeholder applications could be satisfied. 

The stakeholder applications in smart metering are grouped 

under several key categories in Figure 3. With AMI and smart 

grid infrastructure for capturing and transferring data, 

opportunities for smart meter analytics have moved to a new 

dimension. But to make use of such opportunities analytics 

technologies have to successfully face and resolve new data 

related issues as shown in Figure 5. The volume of data 

collected has increased massively due to collection of data in 

shorter intervals and the ability to store large volumes. The 

data capture at frequent intervals by smart meters and the 

infrastructure to transfer such data at high speeds results in 

streams of data. Due to the new technological capabilities of 

the smart meters as well as the increased demand from 

stakeholders including competition among utilities, different 

types of data are being collected to provide more value for 

stakeholders, which has been called variability issue in 

analytics. It is very difficult to measure the effectiveness of 

energy efficiency programs. Many factors such as weather, 

consumer profiles, seasons, geographic regions, infrastructure, 

type of homes and fittings all contribute to the complexity. The 

combination of volume, velocity and variability as well as 

different granularities, issues in integrating various types of 

data results in much more complexity needing to be addressed 

by analytics techniques.  

The new technological capabilities have also resulted in 

increasing expectation from the stakeholders and the different 

applications are highlighted in the right side in Figure 5. Some 

of the key issues that have arisen due to such different 

applications are listed below [25]: 

• Latency and bandwidth – infrequent and low volume 

information (eg: broadcasts) will require low 

bandwidth and probably low latency as well. 

Consumption data on the other hand will require high 

bandwidth, and could tolerate higher latency 

• Batch or real time processing – many event data and 

information for in-home displays will require real 

time processing while batch processing will suitable 

for consumption data 

• Life spans – how long data need to be kept will depend 

on the usage. For eg: billing and statistical data might 

have regulatory requirements to be kept for certain 

periods while detailed consumption data need only be 

kept for short periods 
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• Communication media – in-home display for real time 

information such as prices and statistical data and 

aggregates could be displayed on a portal 

• Privacy and security – Prices are public information 

but consumption is confidential and sensitive 

 

 
Figure 5: Smart metering framework and new impacts 

IV. TECHNOLOGY AND ALGORITHMS 

In smart metering activities, the use of technologies and tools 

has been triggered from two main directions. The metering 

intelligence activities initiated based on the AMI capability 

could be called data driven exploratory activities. Such 

activities are triggered mainly due to the availability of new 

AMI capability; for example, new and more data being 

captured, better grid facilities enabling faster and more reliable 

transfer and storage of data and appropriate skills and other 

resources being available in an organization. In such cases the 

question could be asked: how can this data and infrastructure 

be used to gain some benefit for various stakeholders? 

Although the stakeholder needs are considered, they are not 

the drivers of these activities. In traditional data mining tasks 

this is called exploratory analytics and tools such as clustering, 

visualization and unsupervised machine learning techniques 

are utilized [27]. 

The second types are the application driven directed 

activities. In contrast to the exploratory approach, this 

approach is triggered directly based on stakeholder needs. 

Current knowledge of stakeholder needs, business needs, 

government policies, social and environmental trends (privacy, 

green house effects etc) will be the drivers for this approach. 

Compared to the exploratory approach, the activities initiated 

in this approach will have a known objective. In data mining 

and machine learning terminology, such activities are called 

directed, and use supervised learning tools such as 

classification, decision trees, and artificial neural networks 

[28]. 

The technologies and algorithms used for smart metering is 

presented under the sections core analytics building blocks and 

tools below. 

A. The Core Analytics Building Blocks 

Many statistical, machine learning, data mining and 

mathematical techniques have been used, separately as well as 

in different combinations for smart metering. Since different 

techniques could be used to achieve the same purpose in terms 

of analytics outcomes, we have presented these as analytics 

building blocks in Figure 5. The building blocks of 

aggregations, correlations, trending, exception analysis, and 

forecasting are the key foundations of analytics in smart 

metering.  

The meters connected to individual transformers can be 

aggregated together to identify transformer loading patterns. 

Combining homes or businesses into demand response pools 

to deliver sizable demand reductions (or ‘negawatts’) is 

another aggregation supported by smart meters.  

Heat waves drive spikes in power consumption and 

statistical correlation using time-interval consumption data 

makes it possible to build algorithms that predict the size of 

demand spikes using forecast temperature. Cloud cover, 

humidity and time of day can be added to further refine peak 

predictions. Correlations are generated by aligning data 

temporally, spatially, or across other attributes. This type of 

data is used to build analytical models to measure the energy 

efficiency of individual commercial properties. 

A web site that shows a simple consumption data trend line 

can help customers relate power consumption to household 

activity. The ability to overlay multiple trend lines together is 

also valuable for purposes such as comparing consumption 

across similar seasons and times of day.  

A missing meter read is an exception event. Analyzing 

exceptions over time may identify problems in 

communications and measurement infrastructure, as well as in 

the distribution grid. Component degradation or operational 

breakdowns can be captured by analyzing trends in exception 

events. 

Forecasts are predictions of future events or values using 

historical data. A forecast of power consumption for a new 

residential subdivision can be created using historical data 

from similar homes.  

 

B. Tools for Smart Metering 

There are many mathematical and statistical techniques, 

machine learning, data mining tools that can be used for smart 

metering as shown in Figure 5. Widely used techniques 

include Self Organizing Maps (SOMs), Support Vector 

Machines (SVMs), Principle Component Analysis (PCA), and 

Fuzzy Logic (FL) [29].   

The SOM [30] is an unsupervised learning algorithm which 

is widely used to project high dimensional data vectors on to a 

summarised two or three dimensional space. Its key desirable 

features in exploratory data analysis are its ability to 

summarise the input space and visualise results for 

interpretation. This enables the visual inspection of the 

possible patterns and the structure of data which can then be 
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used for clustering and other techniques to elicit useful 

information. In smart metering SOM has been mostly used for 

exception capture and profiling [68, 83]. 

SVMs [31] are based on supervised learning with associated 

learning algorithms that analyze data and recognize patterns, 

used for classification and regression analysis. An SVM model 

is a representation of the examples as points in space, mapped 

so that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. New examples are then 

mapped into that same space and predicted to belong to a 

category based on which side of the gap they fall on. SVM 

based analytics have been reported for appliance type 

recognition from AMI data [32,33] and electricity theft 

detection [34,35]. 

PCA is a mathematical technique which generates 

an orthogonal linear transformation that converts the data to a 

new coordinate system such that the greatest variance by any 

projection of the data becomes the first coordinate (the first 

principal component), the second greatest variance the second 

coordinate etc. [36]. PCA has been used for power usage data 

aggregation [37], a data reduction technique in consumption 

analysis [38] and the detection of anomalies due to malicious 

modification of network data [39]. 

 FL is a form of reasoning that is approximate rather than 

fixed and exact which may have a truth value that ranges in 

degree between 0 and 1. In [29] FL has been used to create an 

automated decision-making platform in a smart grid, and in 

[36,40] it has been used to improve the reliability of clustering 

of smart meters, which is essential due to scalability problems. 

Integration of technologies and intelligence into the smart grid 

also makes it more open to cyberattacks. In [41], a FL based 

technique for efficiently detecting cyberattacks was described. 

The above are only some of the examples of how the existing 

techniques can be used. Bayesian and Hidden Markov Model 

techniques are being used in a variety of smart metering 

applications such as load disaggregation [42], appliance 

identification [43] and supply demand analysis [44]. Future 

applications will result in a broader range of needs which will 

see more and more methods applied and tailored for smart 

metering to bring out greater benefits. 

V. STAKEHOLDER APPLICATIONS 

The tools described above have been used separately and in 

combination to achieve metering intelligence. Majority of the 

metering intelligence related work reported uses time varying 

power consumption data to generate consumption (or load) 

patterns showing the consumers usage behavior.  Clustering 

usage patterns makes it possible to identify typical behaviors 

called typical load profiles (TLPs) [45,46]. TLPs could then 

be used for load forecasting [47,48], load estimation [49], load 

control [50], abnormal electricity consumption detection [51], 

designing electricity tariff offers [52], developing market 

strategies [53] or demand side response policy [54]. Some of 

the most widely used metering intelligence activities are 

discussed below. 

A. Consumer Profiling, Segmentation and Cluster 

Analysis 

Cluster analysis of smart meter data has been reported from a 

number of regions around the world. Cluster analysis aims at 

discovering structures in large data sets. The k means algorithm 

and a combination of k-means and artificial neural networks such 

as SOMs are popular approaches for the clustering and have been 

used in load profiling [48]. A study of German electricity 

consumers by Flath et al. [55] highlights the advantages of 

cluster analysis in identifying consumer groups for targeted 

service innovation by utilities and retailers. They have also 

suggested the value of incorporating cluster analysis as part of 

the utilities business intelligence systems such that process 

innovation and customer portfolio management could be 

guided by the results. Cluster analysis has been conducted on 

data separated by season and by weekdays and weekends due 

to differing usage patterns. A study reported in [56] identifies 

customer signatures based on usage readings from 50 meters. 

Daily energy consumption plots yield information such as 

minimum, average, and maximum daily energy consumption, 

as well as changes in daily energy use from which one can 

derive information such as household occupancy and occupant 

activities. This highlights privacy as a key concern with 

profiling usage patterns. The key privacy concerns are 

occupancy detection and possibility of inferring appliance 

usage. It has been suggested that statistical representations of 

the data be used rather than actual consumer information. Also 

aggregation, noise addition and consumer signature flattening 

has been proposed as ways for privacy protection. [11]. A 

SOM [30] based clustering of 12,000 Finnish electricity 

consumers was reported in [57]. The study carried out using 

Viscovery SOMine tool suggested that understanding customer 

usage patterns can help design better demand response tariffs 

schemes. The SOM has been used in several other studies as a 

tool for clustering electricity consumption data [58,59,60]. A 

study by Abreu et al uses pattern recognition techniques to 

capture habitual behaviour of consumers using smart meter 

readings [61]. The work based on a new data mining algorithm 

for finer profiling [62], proposed that such fine grained 

profiling can be used to provide tailor made forecasts for 

households. Zhang et.al [63] used clustering techniques to 

identify load profiles for large electricity uses in a Chinese 

province. This work differs from the previously stated since 

they compare three well known clustering techniques, namely, 

k-means, Fuzzy cMeans and SOM.   

B. Load Forecasting  

One of the most valuable analytics applications for the smart 

grid and the availability of time interval data has made it 

possible to forecast in the short term and with high accuracy. 

Accurate forecasts are important for deciding short-term 

operations as well as mid-term scheduling, but also decision 

makers need to have an understanding about the customers 

they have to supply for long-term planning. Many applications 

of load forecasting have been described in literature where 

several statistical and machine learning technologies have been 

utilized. For short and medium term forecasting, time series 

analysis and neural networks have been used [64,65,66]. A 
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problem with short term forecasting models has been the loss 

of understanding about the bigger picture, which requires and 

understanding about the different categories of consumers. In 

[67], a PCA based technique was used to identify the type of 

demand faced by such consumer categories. In [68], a hybrid 

system of SOMs and SVM was used to forecast mid-term 

electricity load. The SOM was used to separate electricity 

consumption data into two groups which are then fed into a 

SVM in a supervised manner for load prediction. In [48], 

Espinoza et al. report on short term forecasting with hourly 

load data from a Belgian grid substation highlighting that 

forecasting and customer profiling are inter-related and 

proposed a unified framework which incorporates both. The 

initial modelling is based on seasonal time series analysis, 

using the Periodic Auto-regression (PAR) model [69], which 

was used in modelling of electricity prices [70]. The stationary 

properties obtained from these models are run through a k-

means clustering process to capture different customer 

profiles.  

C. Pricing Intelligence 

Smart meters will enable to set up dynamic tariff structures to 

improve efficiency in electricity markets by better representing 

the costs of producing and delivering electricity at different 

times. Consumers could benefit from these if they choose more 

flexible tariff arrangements that better represent their 

electricity cost. To determine the price for electricity as well as 

the tariffs, retailers consider payments to distributors for 

services, wholesale electricity cost, retail services cost, as well 

as costs of any regulatory requirements. Smart meter data 

enables deeper analysis for understanding the dynamics of 

supply and demand resulting in better forecasting the needs 

enabling pricing intelligence. Smart meter data can be used to 

analyze and plan different rate structures, without 

discriminating by demographics of low income etc. This has 

been called ‘time of use’ or dynamic pricing. Real time stream 

analysis of consumption is required to make such a scheme 

practical. The benefits of dynamic pricing have been identified 

as demand reduction, cost reduction and economic efficiency 

gain [52].  Prepay is another possible pricing intelligence 

technique with the advantages of being familiar to consumers, 

and also helping utilities limit credit risk. Utilities can take a 

more opt-in approach where customers elect to select in a new 

rate plan, such as dynamic pricing. Customer demography 

segmentation related to consumption based profiling has to be 

carried out in these approaches. [57] describes work carried 

out using SOM tool Viscovery for clustering and visualization 

of consumer information from a utility in Finland. In addition 

to several consumption based attributes, the type of residence 

was used for the segmentation.   

D. Capturing Irregularities 

Many load profile studies have used data-mining techniques, 

pattern recognition, and statistical techniques to obtain 

knowledge from customer load records. Knowledge of 

consumption behaviors is very important as it is very useful for 

formulating tariffs and developing marketing strategies, as well 

as allowing customized billing. Knowledge gathered from 

customers’ load profiles could also be used to identify, detect, 

and predict behavior irregularities or abnormalities that 

ultimately may be due to faulty metering or to human 

intervention and fraud [51,71]. Potential theft or technical 

losses can also be identified by comparing smart meter data 

with measurements from sensors attached to transformers or 

feeders [14]. 

E. Metering Intelligence to Support Real-Time Operations 

The rolling out of AMI makes it possible to acquire near real 

time information of energy use, connect renewable energy to 

grids, manage power outages and faster restoration, fault 

detection and early warning.  

There are several levels of real-time responses. One level is 

at the actual control of machines and equipment which 

requires milliseconds response time. At this level, unless the 

infrastructure of smart meters and communication networks 

can be significantly upgraded to realise reliability and 

millisecond responsiveness required for real time control (e.g. 

controlling transient responses of rotating machines in the 

gird), smart meters cannot necessarily provide adequate 

benefits. For those near real-time critical applications (five 

minutes, quarterly hours, half hours,  hourly  intervals), such as 

fault identification and localization on MV and LV networks 

to ensure faster intervention and reduced outage duration, 

monitoring power quality, acting remotely managing peak-

saving, forecasting network conditions, facilitation of 

integration of renewable energy and PHEVs into the grid, 

smart meters can help [6].  Examples include the measurement 

of voltage distortion (harmonic voltages and voltage 

unbalance) [72] using smart meter data to derive a dynamic 

model for improving volt-var control [73], as well as 

controlling congestion and stability in a power market [74]. 

Metering data can be also used to derive the knowledge of the 

power flows at and near the low voltage end of the distribution 

networks so that the loading and losses of the network can be 

known more accurately. This can help to prevent overloading 

components (transformers and lines) and to avoid power 

quality deviations [75]. Another example is the state 

estimation using smart meter data which may provide an 

alternative economical way of estimating states of MV and LV 

networks [76,77]. Smart meter data can also be used to 

enhance overcurrent protection [78] and load disaggregation 

[79]. The NOBEL project [80] has developed a smart metering 

platform [81] that specializes in near real-time acquisition of 

metering information from the grid as it is reported directly by 

the smart meters. Data stream analysis [82] for capturing time 

based usage patterns has also been reported in [83]. 

 

VI. KEY CHALLENGES AND FUTURE OF SMART 

METERING 

A. Issues in Smart Meter Data Analytics 

To achieve metering intelligence as described in the previous 

sections a number of technical issues need to be successfully 

addressed. The ability to work with very large volumes of data 
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will be a key requirement. It is also essential that technologies 

be able to work with a variety of data such as weather 

information and consumer information, geographic data thus 

requiring techniques for efficient data fusion and integration. 

Such a big data integration and analytics engine is being 

developed by a C3 Energy, where tasks such as voltage 

optimization, asset management, outage management and fault 

detection to customer focused services such as demand 

response, load forecasting and customer segmenting and 

targeting are to be integrated. Real time monitoring and 

diagnostics focused analytics would be an important 

requirement in such systems [84,85].  

To achieve real benefits of analytics outcomes it is essential 

to gain consumer’s acceptance and support for smart meters. A 

key requirement for such acceptance is transparency of the 

process which is currently being addressed by government 

regulators as well as utilities [86]. The availability of easy to 

understand and visual displays of information is also an 

important need. Making smart meter data and analytics 

outcomes available on the web and on mobile devises will 

make such information more readily available and also updates 

communicated to consumers in near real time [87]. Smart 

meter analytics will thus continue to evolve, making demands 

on the current knowledge and technology available.  

The available big smart meter data will also present privacy 

and security concerns that are likely to become more prevalent 

as government-backed initiatives expand deployment of the 

meters to millions of homes across the country [88,89].  These 

will have to be addressed within the regulatory regime of the 

particular country deploying smart meters. For example, 

obtaining permission from the customers to manage, use and 

create value from smart meter data is seen as a standard public 

service responsibility that already exists in all European 

countries [6]. 

The future of smart metering will also depend on several 

key technology revolutions currently in progress, which are 

discussed below. 

B. Smart Meters and Big Data 

Big data is a term that is currently widely being used with data 

analytics. Big data has many interpretations but there are three 

key features that are highlighted; volume, velocity and 

variance. Data captured by smart meters clearly relate to all 

these features thus satisfying the definition for big data. For 

example, moving from one meter reading per month to smart 

meter readings every 30 minutes results in a massive volume 

of data to manage. The data is collected in frequent time 

periods and if technology is available for near real time 

analysis, many advantages could be achieved. The analytics 

technologies will have to deal with not only consumption data, 

consumer information, weather and many grid behavior based 

readings. To manage and use this information to gain insight, 

utility companies must be capable of managing high-volume 

data and using advanced analytics to transform data into 

actionable insights [3]. Utilities that build up this capability 

can gain insight into their operations and assets and can 

become proactive in taking action based on analytics. 

Although the increase in volume, especially in consumption 

data capture is the most prominent big data aspect with smart 

meters the other aspects of velocity and variance are equally 

important. Velocity refers to the need for collecting, 

processing and using the data speedily and in time. Although 

analytical algorithms which can process huge quantities of data 

are available many of these are not able to complete such 

activities in a sufficiently short time period to be of practical 

value. For example overnight is not good enough for real-time 

tasks such as reliability monitoring of equipment, preventing 

outage or security monitoring. Although several research 

techniques have been reported on analyzing streaming data, 

much work still needs to be done in making these 

commercially viable. Variety signifies the increasing array of 

data types, which are collected not only from traditional 

sources like industrial control systems but also from security 

cameras, weather forecasting systems, maps, drawings and 

pictures, and the web. The variety of data is likely to become 

increasingly important to utilities as they begin to analyze 

social media and call center dialogues and to integrate such 

information in to smart meter and grid generated data as part 

of their decision-making and planning processes [3].  

       

C. Smart Meters and Cloud Computing 

Although smart grid enables distributed and renewable energy 

generation, controlling energy generation according to demand 

is still a problem. A new idea is aligning energy supply and 

demand using infrastructure such as a broadband network 

access, performance, scalability, and flexibility, which can be 

provided by a cloud platform [90]. Cloud computing is a 

paradigm in which services including computation, storage and 

network are packaged and provided as metered utility services 

sold on demand both in terms of duration of use and utilization 

[91]. Benefits include on-demand self-service, resource 

pooling and use of a cloud service on pay-per-use or charge-

per-use basis. But this raises security and privacy issues with 

protecting the smart meter data from unauthorized usage [92]. 

Using smart meters to develop a dynamic pay-per-use pricing 

model for regulation and improvement of overall utilization of 

the cloud infrastructure is described in [91].  

Denmark now has its first cloud-based smart metering 

solution, targeted at small utilities and communities that 

previously could not afford such technologies. IBM and 

Cable&Wireless Worldwide are working to develop a new 

intelligent communications solution called UK Smart Energy 

Cloud to support the UK's smart meter implementation 

program with expected roll out of more than 50 million meters. 

The solution is expected to provide for more accurate billing, 

greater smart grid functionality and other benefits. 

Use of cloud platforms and technologies for smart metering 

and grid has resulted in the need of extended capabilities from 

analytics tools. A number of vendors have come up with tools 

such as IBM Coremetrics and Google BigQuery and the cloud 

based software platform for data driven analytics described in 

[93] as part of the Los Angeles Smart Grid Project. The 

described system has attempted to incorporate several of the 

new advanced analytics requirements highlighted earlier such 

as real-time data analytics, scalable machine learning 

techniques and data integration demonstrating how the new 
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advanced analytics techniques provide the base for future 

smart metering and smart grid systems. 

D. Smart Meters and Internet of Things 

The Smart Grid and the environment it creates have been 

called the Internet of Energy [94]. If there is an adaptation on 

the behavior of the prosumer devices based on the information 

that they receive such as electricity price, the energy 

consuming/producing devices will not be black-boxes but be 

able to adapt accordingly. Such an environment is called the 

Internet of Things (IoTs) from a smart grid perspective 

[94,95]. IoTs are expected to grow to 50 billion connected 

devices by 2020 [95]. The connected smart grid provides a 

communication network that will connect all the different 

energy-related equipment of the future. From the transmission 

and distribution power infrastructure, electrical, water, gas, 

and heat meters, to home and building automation. The first 

key step towards a smart grid that makes the IoT a reality will 

be the mass deployment of smart meters. 

The connectivity and accessibility that the IoT brings further 

improvement of customer experience and efficiencies thus 

greater interaction and control. Additionally the IoT enables 

manufacturers and utility providers to cut costs through 

diagnostics and neighbourhood based meter reading. As such 

IoT will result in building a more connected, cost-effective and 

smarter smart grid. 

VII. CONCLUSION 

The paper has presented a comprehensive survey of smart 

metering and electricity smart meter data analytics. Although 

there has been much opposition to smart meters due to privacy 

and health concerns, it is obvious that smart meters are here to 

stay and that the smart grid and smart metering will be a ‘way 

of life’ in the future. A number of different dimensions to 

smart meters have been highlighted including  the smart meter 

technology and the process, the various stakeholders, existing 

analytics technologies and tools, the current technological 

revolutions such as big data, cloud computing and the internet 

of things. The paper has also presented the current smart 

metering space as the smart metering landscape and then a 

framework has been established to relate smart meter data to 

stakeholders and applications created by their needs and the 

analytics tools and techniques required to achieve the 

stakeholder needs. The framework would help identify the 

current limitations in smart metering. Another contribution of 

this paper is the identification of smart meter analytics 

building blocks which enable to link the wide range of tools 

used for smart metering and identify the main analytics 

activities. The smart grid and smart meters will be part of a 

much wider internet of things in the future integrating multiple 

aspects of human needs and services to satisfy such needs, and 

the analytics requirements discussed such as big data, real time 

analytics, stream analytics will need to be built in to the 

processes and workflows for diagnostics in real time.  
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