{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import csv\n",
    "\n",
    "import numpy as np\n",
    "from matplotlib import pyplot as plt\n",
    "import scipy.fftpack"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib widget"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.genfromtxt('data/Netzfrequenz_Sekundenwerte_2012_KW37.csv', delimiter=',')[1:,1:]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "171a6975a39e48bcac5e1247903b70f4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f0144563d30>]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "fig, ax = plt.subplots()\n",
    "ax.plot(data[:3600*24, 0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.02051102806199375"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(data[:,0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2b835c8fb082428cabc1ad9112286728",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(1e-06, 0.5)"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Number of samplepoints\n",
    "N = len(data[:,0])\n",
    "# sample spacing\n",
    "T = 1.0\n",
    "x = np.linspace(0.0, N*T, N)\n",
    "yf = scipy.fftpack.fft(data[:,0])\n",
    "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
    "\n",
    "yf = 2.0/N * np.abs(yf[:N//2])\n",
    "\n",
    "#yf = sum(yf[s::10] for s in range(10)) / 10\n",
    "#xf = sum(xf[s::10] for s in range(10)) / 10\n",
    "\n",
    "fig, ax = plt.subplots()\n",
    "ax.loglog(xf, yf)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
    "ax.set_xlabel('T in s')\n",
    "ax.set_ylabel('Amplitude Δf')\n",
    "ax.grid()\n",
    "ax.set_xlim([1/1000000, 0.5])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "94ca3cb49e7d452dab8f7e2e8d632b84",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(5e-07, 0.02)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Number of samplepoints\n",
    "N = len(data[:,0])\n",
    "# sample spacing\n",
    "T = 1.0\n",
    "x = np.linspace(0.0, N*T, N)\n",
    "yf = scipy.fftpack.fft(data[:,0])\n",
    "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
    "\n",
    "yf = 2.0/N * np.abs(yf[:N//2])\n",
    "\n",
    "average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n",
    "\n",
    "average_width = 20\n",
    "average_start = 100\n",
    "yf = average_from(yf, average_start, average_width)\n",
    "xf = average_from(xf, average_start, average_width)\n",
    "yf = average_from(yf, 300, average_width)\n",
    "xf = average_from(xf, 300, average_width)\n",
    "\n",
    "fig, ax = plt.subplots()\n",
    "ax.loglog(xf, yf)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
    "ax.set_xlabel('T in s')\n",
    "ax.set_ylabel('Amplitude Δf')\n",
    "\n",
    "for i, t in enumerate([45, 60, 600, 1200, 1800, 3600]):\n",
    "    ax.axvline(1/t, color='red', alpha=0.5)\n",
    "    ax.annotate(f'{t} s', xy=(1/t, 3e-3), xytext=(-15, 0), xycoords='data', textcoords='offset pixels', rotation=90)\n",
    "#ax.text(1/60, 10,'60 s', ha='left')\n",
    "ax.grid()\n",
    "ax.set_xlim([1/60000, 0.5])\n",
    "ax.set_ylim([5e-7, 2e-2])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "91a04300b9164bd7a9915d0028f3e563",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ys = scipy.fftpack.fft(data[:,0])\n",
    "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
    "s = 60\n",
    "\n",
    "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
    "\n",
    "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
    "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
    "\n",
    "fig, ax = plt.subplots()\n",
    "ax.loglog(xs[s//2:-s//2+1], ys)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2811a79d4ad8487f822750e4419ccfdb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ys = scipy.fftpack.fft(data[:,0])\n",
    "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
    "s = 1\n",
    "\n",
    "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
    "\n",
    "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
    "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
    "\n",
    "fig, ax = plt.subplots()\n",
    "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c678197e011e4ab4982d3e1d2a2cee9a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ys = scipy.fftpack.fft(data[:,0])\n",
    "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
    "s = 1\n",
    "\n",
    "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
    "\n",
    "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
    "\n",
    "ys *= 2*np.pi*xs\n",
    "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
    "\n",
    "fig, ax = plt.subplots()\n",
    "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "52bcd29a41a54ed1bf9dc63e0c9e83d8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ys = scipy.fftpack.fft(data[:,0])\n",
    "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
    "s = 30\n",
    "\n",
    "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
    "\n",
    "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
    "\n",
    "ys *= 2*np.pi*xs[s//2:-s//2+1]\n",
    "\n",
    "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
    "\n",
    "fig, ax = plt.subplots(figsize=(9,5))\n",
    "ax.loglog(xs[s//2:-s//2+1], ys)\n",
    "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
    "ax.grid()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "15.923566878980893"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "1/0.0628"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "labenv",
   "language": "python",
   "name": "labenv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}