{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import csv\n", "\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "import scipy.fftpack" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib widget" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data = np.genfromtxt('data/Netzfrequenz_Sekundenwerte_2012_KW37.csv', delimiter=',')[1:,1:]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "36f1f4d7970e41afa4737b6f63b7c449", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.plot(data[:3600*24, 0])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.02051102806199375" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.std(data[:,0])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d7fe0512f4254efeb15235a5617ef064", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(1e-06, 0.5)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Number of samplepoints\n", "N = len(data[:,0])\n", "# sample spacing\n", "T = 1.0\n", "x = np.linspace(0.0, N*T, N)\n", "yf = scipy.fftpack.fft(data[:,0])\n", "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n", "\n", "yf = 2.0/N * np.abs(yf[:N//2])\n", "\n", "#yf = sum(yf[s::10] for s in range(10)) / 10\n", "#xf = sum(xf[s::10] for s in range(10)) / 10\n", "\n", "fig, ax = plt.subplots()\n", "ax.loglog(xf, yf)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n", "ax.set_xlabel('T in s')\n", "ax.set_ylabel('Amplitude Δf')\n", "ax.grid()\n", "ax.set_xlim([1/1000000, 0.5])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fd94bc97a276400db0539b703c4eeeac", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(1.6666666666666667e-05, 0.5)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Number of samplepoints\n", "N = len(data[:,0])\n", "# sample spacing\n", "T = 1.0\n", "x = np.linspace(0.0, N*T, N)\n", "yf = scipy.fftpack.fft(data[:,0])\n", "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n", "\n", "yf = 2.0/N * np.abs(yf[:N//2])\n", "\n", "average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n", "\n", "average_width = 20\n", "average_start = 100\n", "yf = average_from(yf, average_start, average_width)\n", "xf = average_from(xf, average_start, average_width)\n", "yf = average_from(yf, 300, average_width)\n", "xf = average_from(xf, 300, average_width)\n", "\n", "fig, ax = plt.subplots()\n", "ax.loglog(xf, yf)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n", "ax.set_xlabel('T in s')\n", "ax.set_ylabel('Amplitude Δf')\n", "ax.grid()\n", "ax.set_xlim([1/60000, 0.5])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "object of type cannot be safely interpreted as an integer.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m~/safety-reset/lab-windows/env/lib/python3.8/site-packages/numpy/core/function_base.py\u001b[0m in \u001b[0;36mlinspace\u001b[0;34m(start, stop, num, endpoint, retstep, dtype, axis)\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 117\u001b[0;31m \u001b[0mnum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moperator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 118\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: 'float' object cannot be interpreted as an integer", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mys\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvolve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mones\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'valid'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.0\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;31m#xs = np.linspace(len(data)/2, 1, len(data)/2)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mlinspace\u001b[0;34m(*args, **kwargs)\u001b[0m\n", "\u001b[0;32m~/safety-reset/lab-windows/env/lib/python3.8/site-packages/numpy/core/function_base.py\u001b[0m in \u001b[0;36mlinspace\u001b[0;34m(start, stop, num, endpoint, retstep, dtype, axis)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0mnum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moperator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m raise TypeError(\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;34m\"object of type {} cannot be safely interpreted as an integer.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m .format(type(num)))\n", "\u001b[0;31mTypeError\u001b[0m: object of type cannot be safely interpreted as an integer." ] } ], "source": [ "ys = scipy.fftpack.fft(data[:,0])\n", "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n", "s = 60\n", "\n", "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n", "\n", "xs = np.linspace(0, 1.0/2.0, len(data)/2)\n", "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n", "\n", "fig, ax = plt.subplots()\n", "ax.loglog(xs[s//2:-s//2+1], ys)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ys = scipy.fftpack.fft(data[:,0])\n", "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n", "s = 1\n", "\n", "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n", "\n", "xs = np.linspace(0, 1.0/2.0, len(data)/2)\n", "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n", "\n", "fig, ax = plt.subplots()\n", "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ys = scipy.fftpack.fft(data[:,0])\n", "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n", "s = 1\n", "\n", "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n", "\n", "xs = np.linspace(0, 1.0/2.0, len(data)/2)\n", "\n", "ys *= 2*np.pi*xs\n", "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n", "\n", "fig, ax = plt.subplots()\n", "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ys = scipy.fftpack.fft(data[:,0])\n", "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n", "s = 30\n", "\n", "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n", "\n", "xs = np.linspace(0, 1.0/2.0, len(data)/2)\n", "\n", "ys *= 2*np.pi*xs[s//2:-s//2+1]\n", "\n", "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n", "\n", "fig, ax = plt.subplots(figsize=(9,5))\n", "ax.loglog(xs[s//2:-s//2+1], ys)\n", "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n", "ax.grid()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "1/0.0628" ] } ], "metadata": { "kernelspec": { "display_name": "labenv", "language": "python", "name": "labenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" } }, "nbformat": 4, "nbformat_minor": 4 }