{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np\n", "from scipy import signal as sig\n", "import struct\n", "\n", "import colorednoise\n", "\n", "np.set_printoptions(linewidth=240)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib widget" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#colorednoise.powerlaw_psd_gaussian(1, int(1e4))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py\n", "preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]],\n", " 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], \n", " 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]}\n", "\n", "def gen_gold(seq1, seq2):\n", " print(seq1.shape, seq2.shape)\n", " gold = [seq1, seq2]\n", " for shift in range(len(seq1)):\n", " gold.append(seq1 ^ np.roll(seq2, -shift))\n", " return gold\n", "\n", "def gold(n):\n", " n = int(n)\n", " if not n in preferred_pairs:\n", " raise KeyError('preferred pairs for %s bits unknown' % str(n))\n", " t0, t1 = preferred_pairs[n]\n", " (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1)\n", " return gen_gold(seq0, seq1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7560730a2391425ab9dad7a1f22e5fb2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "(31,) (31,)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.matshow(gold(5))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def modulate(data, nbits=5, code=29):\n", " # 0, 1 -> -1, 1\n", " mask = gold(nbits)[code]*2 - 1\n", " # same here\n", " data_centered = (data*2 - 1)\n", " return (mask[:, np.newaxis] @ data_centered[np.newaxis, :] + 1).T.flatten() //2" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def correlate(sequence, nbits=5, code=29, decimation=1):\n", " # 0, 1 -> -1, 1\n", " mask = np.repeat(gold(nbits)[code]*2 -1, decimation)\n", " # center\n", " sequence -= np.mean(sequence)\n", " return np.correlate(sequence, mask, mode='full')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(31,) (31,)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eb7e7e5d7dfe4e00b18c4e5038c11182", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "(31,) (31,)\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "foo = modulate(np.array([0, 1, 0, 0, 1, 1, 1, 0])).astype(float)\n", "fig, ax = plt.subplots()\n", "ax.plot(correlate(foo))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(31,) (31,)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c693349edfe843d6adab192d6a95c4dd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "(31,) (31,)\n", "(31,) (31,)\n" ] }, { "data": { "text/plain": [ "(2.0, 1.0311014124075548)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "decimation = 10\n", "signal_amplitude = 2.0\n", "nbits = 5\n", "\n", "foo = np.repeat(modulate(np.array([0, 1, 0, 0, 1, 1, 1, 0]), nbits) * 2.0 - 1, decimation) * signal_amplitude\n", "noise = colorednoise.powerlaw_psd_gaussian(1, len(foo))\n", "\n", "sosh = sig.butter(4, 0.01, btype='highpass', output='sos', fs=decimation)\n", "sosl = sig.butter(6, 1.0, btype='lowpass', output='sos', fs=decimation)\n", "filtered = sig.sosfilt(sosh, sig.sosfilt(sosl, foo + noise))\n", "#filtered = sig.sosfilt(sosh, foo + noise)\n", "\n", "fig, ((ax1, ax3), (ax2, ax4)) = plt.subplots(2, 2, figsize=(16, 9))\n", "fig.tight_layout()\n", "\n", "ax1.plot(foo + noise)\n", "ax1.plot(foo)\n", "ax1.set_title('raw')\n", "\n", "ax2.plot(filtered)\n", "ax2.plot(foo)\n", "ax2.set_title('filtered')\n", "\n", "ax3.plot(correlate(foo + noise, nbits=nbits, decimation=decimation))\n", "ax3.set_title('corr raw')\n", " \n", "ax3.grid()\n", "\n", "ax4.plot(correlate(filtered, nbits=nbits, decimation=decimation))\n", "ax4.set_title('corr filtered')\n", "ax4.grid()\n", "\n", "rms = lambda x: np.sqrt(np.mean(np.square(x)))\n", "rms(foo), rms(noise)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean: 49.98625\n" ] } ], "source": [ "with open('/mnt/c/Users/jaseg/shared/raw_freq.bin', 'rb') as f:\n", " mains_noise = np.copy(np.frombuffer(f.read(), dtype='float32'))\n", " print('mean:', np.mean(mains_noise))\n", " mains_noise -= np.mean(mains_noise)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(63,) (63,)\n", "(63,) (63,)\n", "(63,) (63,)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ ":22: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", " fig, ((ax1, ax3, ax5), (ax2, ax4, ax6)) = plt.subplots(2, 3, figsize=(16, 9))\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f58125333c294cb1b426b735829c30c5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.002, 0.012591236)" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "decimation = 10\n", "signal_amplitude = 2.0e-3\n", "nbits = 6\n", "\n", "foo = np.repeat(modulate(np.array([0, 1, 0, 0, 1, 1, 1, 0]), nbits) * 2.0 - 1, decimation) * signal_amplitude\n", "noise = np.resize(mains_noise, len(foo))\n", "\n", "sosh = sig.butter(12, 0.05, btype='highpass', output='sos', fs=decimation)\n", "sosl = sig.butter(6, 1.0, btype='lowpass', output='sos', fs=decimation)\n", "#filtered = sig.sosfilt(sosh, sig.sosfilt(sosl, foo + noise))\n", "filtered = sig.sosfilt(sosh, foo + noise)\n", "\n", "cor1 = correlate(foo + noise, nbits=nbits, decimation=decimation)\n", "cor2 = correlate(filtered, nbits=nbits, decimation=decimation)\n", "\n", "sosn = sig.butter(12, 4, btype='highpass', output='sos', fs=decimation)\n", "#cor1_flt = sig.sosfilt(sosn, cor1)\n", "#cor2_flt = sig.sosfilt(sosn, cor2)\n", "cor1_flt = cor1[1:] - cor1[:-1]\n", "cor2_flt = cor2[1:] - cor2[:-1]\n", "\n", "fig, ((ax1, ax3, ax5), (ax2, ax4, ax6)) = plt.subplots(2, 3, figsize=(16, 9))\n", "fig.tight_layout()\n", "\n", "ax1.plot(foo + noise)\n", "ax1.plot(foo)\n", "ax1.set_title('raw')\n", "\n", "ax2.plot(filtered)\n", "ax2.plot(foo)\n", "ax2.set_title('filtered')\n", "\n", "ax3.plot(cor1)\n", "ax3.set_title('corr raw')\n", "ax3.grid()\n", "\n", "ax4.plot(cor2)\n", "ax4.set_title('corr filtered')\n", "ax4.grid()\n", "\n", "ax5.plot(cor1_flt)\n", "ax5.set_title('corr raw (highpass)')\n", "ax5.grid()\n", "\n", "ax6.plot(cor2_flt)\n", "ax6.set_title('corr filtered (highpass)')\n", "ax6.grid()\n", "\n", "rms = lambda x: np.sqrt(np.mean(np.square(x)))\n", "rms(foo), rms(noise)" ] } ], "metadata": { "kernelspec": { "display_name": "labenv", "language": "python", "name": "labenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" } }, "nbformat": 4, "nbformat_minor": 4 }