#include <stdbool.h> #include <stdint.h> #include <assert.h> #include <string.h> #include <math.h> #include <stm32f407xx.h> #include <stm32f4_isr.h> #include "sr_global.h" #include "adc.h" #include "spi_flash.h" #include "freq_meas.h" #include "dsss_demod.h" #include "con_usart.h" #include "mspdebug_wrapper.h" #include "crypto.h" static struct spi_flash_if spif; unsigned int sysclk_speed = 0; unsigned int apb1_speed = 0; unsigned int apb2_speed = 0; unsigned int auxclk_speed = 0; unsigned int apb1_timer_speed = 0; unsigned int apb2_timer_speed = 0; struct leds leds; ssize_t jt_spi_flash_read_block(void *usr, int addr, size_t len, uint8_t *out); static void update_image_flash_counter(void); void __libc_init_array(void) { /* we don't need this. */ } void __assert_func (unused_a const char *file, unused_a int line, unused_a const char *function, unused_a const char *expr) { asm volatile ("bkpt"); while(1) {} } static void clock_setup(void) { /* 8MHz HSE clock as PLL source. */ #define HSE_SPEED 8000000 /* Divide by 8 -> 1 MHz */ #define PLL_M 8 /* Multiply by 336 -> 336 MHz VCO frequency */ #define PLL_N 336 /* Divide by 4 -> 84 MHz (max freq for our chip) */ #define PLL_P 2 /* Aux clock for USB OTG, SDIO, RNG: divide VCO frequency (336 MHz) by 7 -> 48 MHz (required by USB OTG) */ #define PLL_Q 7 if (((RCC->CFGR & RCC_CFGR_SWS_Msk) >> RCC_CFGR_SW_Pos) != 0) asm volatile ("bkpt"); if (RCC->CR & RCC_CR_HSEON) asm volatile ("bkpt"); RCC->CR |= RCC_CR_HSEON; while(!(RCC->CR & RCC_CR_HSERDY)) ; RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* set voltage scale to 1 for max frequency * (0b0) scale 2 for fCLK <= 144 Mhz * (0b1) scale 1 for 144 Mhz < fCLK <= 168 Mhz */ PWR->CR |= PWR_CR_VOS; /* set AHB prescaler to /1 (CFGR:bits 7:4) */ RCC->CFGR |= (0 << RCC_CFGR_HPRE_Pos); /* set ABP1 prescaler to 4 -> 42MHz */ RCC->CFGR |= (5 << RCC_CFGR_PPRE1_Pos); /* set ABP2 prescaler to 2 -> 84MHz */ RCC->CFGR |= (4 << RCC_CFGR_PPRE2_Pos); if (RCC->CR & RCC_CR_PLLON) asm volatile ("bkpt"); /* Configure PLL */ static_assert(PLL_P % 2 == 0); static_assert(PLL_P >= 2 && PLL_P <= 8); static_assert(PLL_N >= 50 && PLL_N <= 432); static_assert(PLL_M >= 2 && PLL_M <= 63); static_assert(PLL_Q >= 2 && PLL_Q <= 15); uint32_t old = RCC->PLLCFGR & ~(RCC_PLLCFGR_PLLM_Msk | RCC_PLLCFGR_PLLN_Msk | RCC_PLLCFGR_PLLP_Msk | RCC_PLLCFGR_PLLQ_Msk | RCC_PLLCFGR_PLLSRC); RCC->PLLCFGR = old | (PLL_M<<RCC_PLLCFGR_PLLM_Pos) | (PLL_N << RCC_PLLCFGR_PLLN_Pos) | ((PLL_P/2 - 1) << RCC_PLLCFGR_PLLP_Pos) | (PLL_Q << RCC_PLLCFGR_PLLQ_Pos) | RCC_PLLCFGR_PLLSRC; /* select HSE as PLL source */ RCC->CR |= RCC_CR_PLLON; sysclk_speed = HSE_SPEED / PLL_M * PLL_N / PLL_P; auxclk_speed = HSE_SPEED / PLL_M * PLL_N / PLL_Q; apb1_speed = sysclk_speed / 4; apb1_timer_speed = apb1_speed * 2; apb2_speed = sysclk_speed / 2; apb2_timer_speed = apb2_speed * 2; /* Wait for main PLL */ while(!(RCC->CR & RCC_CR_PLLRDY)) ; /* Configure Flash: enable prefetch, insn cache, data cache; set latency = 5 wait states * See reference manual (RM0090), Section 3.5.1, Table 10 (p. 80) */ FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN | FLASH_ACR_DCEN | (5<<FLASH_ACR_LATENCY_Pos); /* Select PLL as system clock source */ RCC->CFGR &= ~RCC_CFGR_SW_Msk; RCC->CFGR |= 2 << RCC_CFGR_SW_Pos; /* Wait for clock to switch over */ while ((RCC->CFGR & RCC_CFGR_SWS_Msk)>>RCC_CFGR_SWS_Pos != 2) ; } static void led_setup(void) { RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN; /* onboard leds */ GPIOA->MODER |= (1<<GPIO_MODER_MODER6_Pos) | (1<<GPIO_MODER_MODER7_Pos); GPIOB->MODER |= (1<<GPIO_MODER_MODER11_Pos) | (1<<GPIO_MODER_MODER12_Pos) | (1<<GPIO_MODER_MODER13_Pos)| (1<<GPIO_MODER_MODER14_Pos); GPIOB->BSRR = 0xf << 11; } static void spi_flash_if_set_cs(bool val) { if (val) GPIOB->BSRR = 1<<0; else GPIOB->BSRR = 1<<16; } static void spi_flash_setup(void) { RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; GPIOB->MODER &= ~GPIO_MODER_MODER3_Msk & ~GPIO_MODER_MODER4_Msk & ~GPIO_MODER_MODER5_Msk & ~GPIO_MODER_MODER0_Msk; GPIOB->MODER |= (2<<GPIO_MODER_MODER3_Pos) /* SCK */ | (2<<GPIO_MODER_MODER4_Pos) /* MISO */ | (2<<GPIO_MODER_MODER5_Pos) /* MOSI */ | (1<<GPIO_MODER_MODER0_Pos); /* CS */ GPIOB->OSPEEDR &= ~GPIO_OSPEEDR_OSPEED3_Msk & ~GPIO_OSPEEDR_OSPEED4_Msk & ~GPIO_OSPEEDR_OSPEED5_Msk & ~GPIO_OSPEEDR_OSPEED0_Msk; GPIOB->OSPEEDR |= (2<<GPIO_OSPEEDR_OSPEED3_Pos) /* SCK */ | (2<<GPIO_OSPEEDR_OSPEED4_Pos) /* MISO */ | (2<<GPIO_OSPEEDR_OSPEED5_Pos) /* MOSI */ | (2<<GPIO_OSPEEDR_OSPEED0_Pos); /* CS */ GPIOB->AFR[0] &= ~GPIO_AFRL_AFSEL3_Msk & ~GPIO_AFRL_AFSEL4_Msk & ~GPIO_AFRL_AFSEL5_Msk; GPIOB->AFR[0] |= (5<<GPIO_AFRL_AFSEL3_Pos) | (5<<GPIO_AFRL_AFSEL4_Pos) | (5<<GPIO_AFRL_AFSEL5_Pos); RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; RCC->APB2RSTR |= RCC_APB2RSTR_SPI1RST; RCC->APB2RSTR &= ~RCC_APB2RSTR_SPI1RST; spif_init(&spif, 256, SPI1, &spi_flash_if_set_cs); } /* SPI flash test routine to be called from gdb */ #ifdef SPI_FLASH_TEST void spi_flash_test(void) { spif_clear_mem(&spif); uint32_t buf[1024]; for (size_t addr=0; addr<0x10000; addr += sizeof(buf)) { for (size_t i=0; i<sizeof(buf); i+= sizeof(buf[0])) buf[i/sizeof(buf[0])] = addr + i; spif_write(&spif, addr, sizeof(buf), (char *)buf); } for (size_t i=0; i<sizeof(buf)/sizeof(buf[0]); i++) buf[i] = 0; spif_read(&spif, 0x1030, sizeof(buf), (char *)buf); asm volatile ("bkpt"); } #endif static struct jtag_img_descriptor { size_t devmem_img_start; size_t spiflash_img_start; size_t img_len; } jtag_img = { .devmem_img_start = 0x00c000, .spiflash_img_start = 0x000000, .img_len = 0x004000, }; char fw_dump[0x4000] = { #include "EasyMeter_Q3DA1002_V3.03_fw_dump_0xc000.h" }; const int fw_dump_offx = 0xc000; const int row2_offx = 0xf438 - fw_dump_offx; ssize_t jt_spi_flash_read_block(void *usr, int addr, size_t len, uint8_t *out) { /* struct jtag_img_descriptor *desc = (struct jtag_img_descriptor *)usr; return spif_read(&spif, desc->spiflash_img_start + addr, len, (char *)out); */ for (size_t i=0; i<len; i++) out[i] = fw_dump[addr - fw_dump_offx + i]; return len; } void update_image_flash_counter() { static int flash_counter = 0; flash_counter ++; fw_dump[row2_offx + 0] = flash_counter/10000 + '0'; flash_counter %= 10000; fw_dump[row2_offx + 1] = flash_counter/1000 + '0'; flash_counter %= 1000; fw_dump[row2_offx + 2] = flash_counter/100 + '0'; flash_counter %= 100; fw_dump[row2_offx + 3] = flash_counter/10 + '0'; flash_counter %= 10; fw_dump[row2_offx + 4] = flash_counter + '0'; } /* Callback from crypto.c:oob_message_received */ void oob_trigger_activated(enum trigger_domain domain, int serial) { con_printf("oob_trigger_activated(%d, %d)\r\n", domain, serial); con_printf("Attempting to flash meter...\r\n"); update_image_flash_counter(); int flash_tries = 0; while (flash_tries++ < 25) { mspd_jtag_init(); if (!mspd_jtag_flash_and_reset(jtag_img.devmem_img_start, jtag_img.img_len, jt_spi_flash_read_block, &jtag_img)) break; for (int j=0; j<168*1000*5; j++) asm volatile ("nop"); } if (flash_tries == 25) con_printf("Giving up.\r\n"); } static unsigned int measurement_errors = 0; static struct dsss_demod_state demod_state; static uint32_t freq_sample_ts = 0; static float debug_last_freq = 0; int main(void) { #if DEBUG /* PLL clock on MCO2 (pin C9) */ RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; GPIOC->MODER &= ~GPIO_MODER_MODER9_Msk; GPIOC->MODER |= (2<<GPIO_MODER_MODER9_Pos); GPIOC->AFR[1] &= ~GPIO_AFRH_AFSEL9_Msk; GPIOC->OSPEEDR |= (3<<GPIO_OSPEEDR_OSPEED9_Pos); RCC->CFGR |= (6<<RCC_CFGR_MCO2PRE_Pos) | (3<<RCC_CFGR_MCO2_Pos); #endif if (((SCB->CPACR>>20) & 0xf) != 0xf) { asm volatile ("bkpt"); } clock_setup(); con_usart_init(); con_printf("\033[0m\033[2J\033[HBooting...\r\n"); led_setup(); spi_flash_setup(); adc_init(); #if DEBUG /* TIM1 CC1 (ADC trigger) on pin A8 */ GPIOA->MODER &= ~GPIO_MODER_MODER8_Msk; GPIOA->MODER |= (2<<GPIO_MODER_MODER8_Pos); GPIOA->AFR[1] &= ~GPIO_AFRH_AFSEL8_Msk; GPIOA->AFR[1] |= 1<<GPIO_AFRH_AFSEL8_Pos; GPIOA->MODER |= (1<<GPIO_MODER_MODER11_Pos) | (1<<GPIO_MODER_MODER12_Pos) | (1<<GPIO_MODER_MODER15_Pos); #endif dsss_demod_init(&demod_state); con_printf("Booted.\r\n"); /* FIXME DEBUG */ #if 0 uint8_t test_data[TRANSMISSION_SYMBOLS] = { 0 }; con_printf("Test 0\r\n"); handle_dsss_received(test_data); uint8_t test_data2[TRANSMISSION_SYMBOLS] = { 0x24, 0x0f, 0x3b, 0x10, 0x27, 0x0e, 0x22, 0x30, 0x01, 0x2c, 0x1c, 0x0b, 0x35, 0x0a, 0x12, 0x27, 0x11, 0x20, 0x0c, 0x10, 0xc0, 0x08, 0xa4, 0x72, 0xa9, 0x9b, 0x7b, 0x27, 0xee, 0xcd }; con_printf("Test 1\r\n"); handle_dsss_received(test_data2); #endif /* END DEBUG */ while (23) { if (adc_fft_buf_ready_idx != -1) { for (int j=0; j<168*1000*2; j++) asm volatile ("nop"); GPIOA->BSRR = 1<<11; memcpy(adc_fft_buf[!adc_fft_buf_ready_idx], adc_fft_buf[adc_fft_buf_ready_idx] + FMEAS_FFT_LEN/2, sizeof(adc_fft_buf[0][0]) * FMEAS_FFT_LEN/2); GPIOA->BSRR = 1<<11<<16; GPIOB->ODR ^= 1<<14; bool clip_low=false, clip_high=false; const int clip_thresh = 100; for (size_t j=FMEAS_FFT_LEN/2; j<FMEAS_FFT_LEN; j++) { int val = adc_fft_buf[adc_fft_buf_ready_idx][j]; if (val < clip_thresh) clip_low = true; if (val > FMEAS_ADC_MAX-clip_thresh) clip_high = true; } GPIOB->ODR = (GPIOB->ODR & ~(3<<11)) | (!clip_low<<11) | (!clip_high<<12); for (int j=0; j<168*1000*2; j++) asm volatile ("nop"); GPIOA->BSRR = 1<<11; float out; if (adc_buf_measure_freq(adc_fft_buf[adc_fft_buf_ready_idx], &out)) { con_printf("%012d: measurement error\r\n", freq_sample_ts); measurement_errors++; GPIOB->BSRR = 1<<13; debug_last_freq = NAN; } else { debug_last_freq = out; con_printf("%012d: %2d.%03d Hz\r\n", freq_sample_ts, (int)out, (int)(out * 1000) % 1000); /* frequency ok led */ if (48 < out && out < 52) GPIOB->BSRR = 1<<13<<16; else GPIOB->BSRR = 1<<13; GPIOA->BSRR = 1<<12; dsss_demod_step(&demod_state, out, freq_sample_ts); GPIOA->BSRR = 1<<12<<16; } GPIOA->BSRR = 1<<11<<16; freq_sample_ts++; /* TODO: also increase in case of freq measurement error? */ adc_fft_buf_ready_idx = -1; } } return 0; } void NMI_Handler(void) { asm volatile ("bkpt #1"); } void HardFault_Handler(void) { asm volatile ("bkpt #2"); } void MemManage_Handler(void) { asm volatile ("bkpt #3"); } void BusFault_Handler(void) { asm volatile ("bkpt #4"); } void UsageFault_Handler(void) { asm volatile ("bkpt #5"); } void SVC_Handler(void) { asm volatile ("bkpt #6"); } void DebugMon_Handler(void) { asm volatile ("bkpt #7"); } void PendSV_Handler(void) { asm volatile ("bkpt #8"); } void SysTick_Handler(void) { asm volatile ("bkpt #9"); }