#ifndef SIMULATION #include #endif #include #include #include #include #include "freq_meas.h" #include "sr_global.h" #include "simulation.h" /* FTT window lookup table defined in generated/fmeas_fft_window.c */ extern const float * const fmeas_fft_window_table; /* jury-rig some definitions for these functions since the ARM headers only export an over-generalized variable bin size * variant. */ extern arm_status arm_rfft_32_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_64_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_128_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_256_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_512_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_1024_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_2048_fast_init_f32(arm_rfft_fast_instance_f32 * S); extern arm_status arm_rfft_4096_fast_init_f32(arm_rfft_fast_instance_f32 * S); #define CONCAT(A, B, C) A ## B ## C #define arm_rfft_init_name(nbits) CONCAT(arm_rfft_, nbits, _fast_init_f32) void func_gauss_grad(float *out, float *params, int x, void *userdata); float func_gauss(float *params, int x, void *userdata); int adc_buf_measure_freq(uint16_t adc_buf[FMEAS_FFT_LEN], float *out) { int rc; float in_buf[FMEAS_FFT_LEN]; float out_buf[FMEAS_FFT_LEN]; /* DEBUG_PRINTN(" [emulated adc buf] "); for (size_t i=0; iBSRR = 1<<12; #endif arm_rfft_fast_f32(&fft_inst, in_buf, out_buf, 0); #ifndef SIMULATION GPIOA->BSRR = 1<<12<<16; #endif #define FMEAS_FFT_WINDOW_MIN_F_HZ 30.0f #define FMEAS_FFT_WINDOW_MAX_F_HZ 70.0f const float binsize_hz = (float)FMEAS_ADC_SAMPLING_RATE / FMEAS_FFT_LEN; const size_t first_bin = (int)(FMEAS_FFT_WINDOW_MIN_F_HZ / binsize_hz); const size_t last_bin = (int)(FMEAS_FFT_WINDOW_MAX_F_HZ / binsize_hz + 0.5f); const size_t nbins = last_bin - first_bin + 1; /* DEBUG_PRINT("binsize_hz=%f first_bin=%zd last_bin=%zd nbins=%zd", binsize_hz, first_bin, last_bin, nbins); DEBUG_PRINTN(" [bins real] "); for (size_t i=0; i a_max) { a_max = out_buf[i]; i_max = i; } } float par[3] = { a_max, i_max, 1.0f }; /* DEBUG_PRINT(" par_pre={%010f, %010f, %010f}", par[0], par[1], par[2]); */ #ifndef SIMULATION GPIOA->BSRR = 1<<12; #endif if (levmarq(3, par, nbins, out_buf, NULL, func_gauss, func_gauss_grad, NULL, &lmstat) < 0) { #ifndef SIMULATION GPIOA->BSRR = 1<<12<<16; #endif *out = NAN; return -1; } #ifndef SIMULATION GPIOA->BSRR = 1<<12<<16; #endif /* DEBUG_PRINT(" par_post={%010f, %010f, %010f}", par[0], par[1], par[2]); DEBUG_PRINT("done."); */ float res = (par[1] + first_bin) * binsize_hz; if (res < 5 || res > 150) { *out = NAN; return -1; } *out = res; return 0; } float func_gauss(float *params, int x, void *userdata) { UNUSED(userdata); float a = params[0], b = params[1], c = params[2]; float n = x-b; return a*expf(-n*n / (2.0f* c*c)); } void func_gauss_grad(float *out, float *params, int x, void *userdata) { UNUSED(userdata); float a = params[0], b = params[1], c = params[2]; float n = x-b; float e = expf(-n*n / (2.0f * c*c)); /* d/da */ out[0] = e; /* d/db */ out[1] = a*n/(c*c) * e; /* d/dc */ out[2] = a*n*n/(c*c*c) * e; }