/* * levmarq.c * * This file contains an implementation of the Levenberg-Marquardt algorithm * for solving least-squares problems, together with some supporting routines * for Cholesky decomposition and inversion. No attempt has been made at * optimization. In particular, memory use in the matrix routines could be * cut in half with a little effort (and some loss of clarity). * * It is assumed that the compiler supports variable-length arrays as * specified by the C99 standard. * * Ron Babich, May 2008 * */ #include #include #include #include "levmarq.h" #include "simulation.h" #define TOL 1e-20f /* smallest value allowed in cholesky_decomp() */ /* set parameters required by levmarq() to default values */ void levmarq_init(LMstat *lmstat) { lmstat->max_it = 500; lmstat->init_lambda = 0.0001f; lmstat->up_factor = 10.0f; lmstat->down_factor = 10.0f; lmstat->target_derr = 1e-12f; } #ifndef SIMULATION float sqrtf(float arg) { float out=NAN; arm_sqrt_f32(arg, &out); return out; } #endif /* perform least-squares minimization using the Levenberg-Marquardt algorithm. The arguments are as follows: npar number of parameters par array of parameters to be varied ny number of measurements to be fit y array of measurements dysq array of error in measurements, squared (set dysq=NULL for unweighted least-squares) func function to be fit grad gradient of "func" with respect to the input parameters fdata pointer to any additional data required by the function lmstat pointer to the "status" structure, where minimization parameters are set and the final status is returned. Before calling levmarq, several of the parameters in lmstat must be set. For default values, call levmarq_init(lmstat). */ int levmarq(int npar, float *par, int ny, float *y, float *dysq, float (*func)(float *, int, void *), void (*grad)(float *, float *, int, void *), void *fdata, LMstat *lmstat) { int x,i,j,it,nit,ill; float lambda,up,down,mult,weight,err,newerr,derr,target_derr; float h[npar][npar],ch[npar][npar]; float g[npar],d[npar],delta[npar],newpar[npar]; nit = lmstat->max_it; lambda = lmstat->init_lambda; up = lmstat->up_factor; down = 1/lmstat->down_factor; target_derr = lmstat->target_derr; weight = 1; derr = newerr = 0; /* to avoid compiler warnings */ /* calculate the initial error ("chi-squared") */ err = error_func(par, ny, y, dysq, func, fdata); /* main iteration */ for (it=0; it 0); } if (ill) { mult = (1 + lambda*up)/(1 + lambda); lambda *= up; it++; } } for (i=0; ifinal_it = it; lmstat->final_err = err; lmstat->final_derr = derr; if (it == nit) { DEBUG_PRINT("did not converge"); return -1; } return it; } /* calculate the error function (chi-squared) */ float error_func(float *par, int ny, float *y, float *dysq, float (*func)(float *, int, void *), void *fdata) { int x; float res,e=0; for (x=0; x=0; i--) { sum = 0; for (j=i+1; j