{ "cells": [ { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "import math\n", "import statistics\n", "import json\n", "\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "import matplotlib as mpl\n", "import tqdm" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib notebook" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#from math import nan, inf\n", "#data = {'dec_proto_am_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.1706362050026655, -1.193387892562896, -1.2494141100905836, -1.273546683602035, -1.3226867043413222, -1.3284842972643673, -1.4249085476621985, -2.4881654670462012, -2.9280282892286777, -1.8337596086785197, -3.4516299068927765, -3.6739503433927894, -3.85142894461751, -4.2109690103679895, -4.841764334589243, -5.121118910610676, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0.000562024584446438, 0.002583366143280799, 0.003536123538459578, 0.0060136203314800725, 0.0017120634851061035, 0.01202664019209608, 0.009352711681458127, 0.010626429313400118, 0.0031605552412962345, 0.07580074150906693, 0.008303067934118849, 0.010968003992851543, 0.010921403354231309, 0.014436211616218221, 0.045257276108434545, 0.05063300417965297, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]), 'dec_proto_am_dc_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.208226392045617, -1.2001309534534812, -1.2082590111531317, -1.2057580375112593, -1.214704089694553, -1.231758143831406, -1.2328452042170934, -1.2342556988606688, -1.2555496906861663, -1.2633800823241472, -1.2801077286712825, -1.292429564986378, -1.2502315024699062, -1.2731027859982436, -1.3264964096914462, -1.350060076963517, -1.402916835230801, -1.6361557068303227, -1.3996004345826805, -2.025891115888953, -2.2259163050377957, -2.403329889470167, -2.5532801901852644, -2.6723825335502625, -2.7451475376985512, -2.7838943274880226, -2.7973828878928355, -2.8114503007382154, -2.7500487601808214, -2.7576294792325875, -2.7531131004032336, -2.771351588479543, -2.763352069271704, -2.7856492625232554, -2.8089246354122395, -2.805404500961304], [0.0006223969511333752, 0.001109700896962153, 0.00210398864758181, 0.0009171589283670842, 0.01005799259051457, 0.01198940071540007, 0.013730311872618627, 0.020358273695306007, 0.019376830251761356, 0.02698367824924875, 0.03015560422449139, 0.04189253434399468, 0.04626542022859063, 0.07217384274518368, 0.08584595043975161, 0.12539079396237413, 0.09791907379447246, 0.10581626829587948, 0.18250650933422224, 0.07591527055792387, 0.20120497031325296, 0.2529568393261202, 0.3140587593946733, 0.3626712973758648, 0.39454531783086805, 0.40694947364033235, 0.4101018950589088, 0.38136874448954844, 0.4108311426740005, 0.40839715897167816, 0.4083367927775933, 0.40823628264400785, 0.4080951641200549, 0.40959607776701595, 0.40969886669408834, 0.4099477409126599]), 'dec_proto_fm_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.3057961403392255, -1.3484294968657196, -1.4667961434461176, -2.8690875116735697, -1.6547222812660038, -1.3891625558026135, -3.5982019547373056, -3.771391890011728, -4.029223203659058, -4.187133187428117, -4.5257152915000916, -4.8291374538093805, -4.9882102105766535, -4.988903861492872, -4.977243402972817, -4.991583617404103, -4.978662932291627, -4.995597720146179, -4.980234434828162, -4.898328188806772, -4.886065758764744, -4.892892232164741, -4.887955756857991, -4.894121825695038, -4.874834077432752, -4.881909834221005, -4.885749246925116, -4.879474958404899, -4.893610496073961, -4.893589161336422, -4.900892127305269, -4.89244575984776, -4.886744260787964, -4.895636919885874, -4.909515650942922, -4.8994301706552505], [0.014213245118859085, 0.001330722343276248, 0.013951488821076687, 0.0041134580502828425, 0.038365233682153145, 0.030733212747131068, 0.0091992661239188, 0.010529797577944408, 0.014647350039240111, 0.014036738695564741, 0.0201667482688038, 0.03195929762792339, 0.050554225347760565, 0.05155121488079693, 0.05696637316379902, 0.05194819962648275, 0.04815391425232906, 0.04198674248536032, 0.0531488148233794, 0.043095657257340825, 0.05140641385191975, 0.047935496094956176, 0.05329373773860191, 0.05040869503181174, 0.05644083328947176, 0.053389328604204575, 0.05074839526504205, 0.053625197798602975, 0.047252304573416753, 0.051310379811370974, 0.046438087027853785, 0.05365724267638675, 0.0534321058650641, 0.04956836848859283, 0.04218369035098332, 0.05032427561533336])}" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "scrolled": true }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "75ad09f7b6df4c1aa68ef78b1e4ceb0a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, max=380), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Will launch 450 simulation jobs in 38 batches of 12\n", "Starting batch 1/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 2/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 3/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 4/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 5/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 6/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 7/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 8/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 9/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 10/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 11/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 12/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 13/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 14/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 15/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 16/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 17/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 18/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 19/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 20/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 21/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 22/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 23/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 24/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 25/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 26/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 27/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 28/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 29/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 30/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 31/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 32/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 33/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 34/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 35/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 36/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 37/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "Starting batch 38/38...\n", "done.\n", "Waiting for simulation:\n", "Terminating processes...\n", "done.\n", "Processing simulation results\n", "\n" ] } ], "source": [ "import sweep_gr_sims\n", "data = sweep_gr_sims.run_simulation(\n", " amplitudes = [10**x for x in np.linspace(0, 2.5, 30)],\n", " #simulations=['dec_proto_am_ber_top.py'],\n", " duration=10.0,\n", " forklimit=12,\n", " repeat_runs=5,\n", " tqdm=tqdm.tqdm_notebook)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [], "source": [ "with open('results_digitalocean2.json') as f:\n", " data = json.loads(f.read())\n", " for sim in list(data):\n", " data[sim] = {\n", " float(a): entry for a, entry in data[sim].items()\n", " }" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "#with open('gr_sweep_results2.json', 'w') as f:\n", "# f.write(json.dumps(data))" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "labels = {\n", " 'dec_proto_am_dc_ber_top.py': '\"DC\"',\n", " 'dec_proto_am_ber_top.py': 'ASK',\n", " 'dec_proto_fm_ber_top.py': 'FSK'\n", "}" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"900\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(9, 5))\n", "ax.set_title('BERs for basic modulation types')\n", "if data.keys() - labels.keys():\n", " raise ValueError(f'Unmatched simulation labels: {data.keys() - labels.keys()}')\n", "for sim, label in labels.items():\n", " d = data[sim]\n", " ampls = np.array(sorted(list(d.keys())))\n", " # We've left the gnuradio BER block at its default setting, a cutoff at -70dB BER,\n", " # so we replace -inf with -7 here.\n", " filter_inf = lambda l: [ x for x in l if math.isfinite(x) ] or [-7]\n", " filter_nan = lambda l: [ x for x in l if math.isfinite(x) ] or [math.nan]\n", " bers = np.array([ statistics.mean(filter_inf(d[a][0])) for a in ampls ])\n", " #stdevs = [ statistics.stdev(filter_inf(d[a][0])) if len(filter_inf(d[a][0]))>1 else 0 for a in ampls ]\n", " stdevs = np.array([ math.sqrt(statistics.mean([x**2 for x in filter_nan(d[a][1])] + [0])) for a in ampls ])\n", " \n", " # The Gnuradio BER block calculates bit error rate over whole bytes, but we only feed in bits casted\n", " # to bytes. We correct for this by adding log10(8).\n", " # Also convert log10 values to dB.\n", " bers = (bers + math.log10(8))*10\n", " stdevs *= 10\n", " #ax.errorbar(ampls, bers, yerr=stdevs, label=label)\n", " p, = ax.plot(ampls, bers, label=label)\n", " \n", " ax.fill_between(ampls, bers-stdevs, bers+stdevs,\n", " alpha=0.3, facecolor=p.get_color(), linewidth=0)\n", "ax.grid()\n", "ax.legend()\n", "ax.set_xscale('log')\n", "ax.set_xlabel('Amplitude Δf [mHz]')\n", "ax.set_ylabel('BER [dB]')\n", "ax.set_ylim([-50, 0])\n", "ber05 = 10*math.log10(0.5)\n", "ax.axhline(ber05, linestyle='--', color='red')\n", "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", "xform = mpl.transforms.blended_transform_factory(ax.transAxes, ax.transData)\n", "ax.text(0.9, ber05, f'BER=0.5', transform=xform, color='white', bbox=bbox, ha='center', va='center')\n", "\n", "None" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }