From 50998fcfb916ae251309bd4b464f2c122e8cb30d Mon Sep 17 00:00:00 2001 From: jaseg Date: Fri, 9 Apr 2021 18:38:02 +0200 Subject: Repo re-org --- lab-windows/signal_gen.ipynb | 298 ------------------------------------------- 1 file changed, 298 deletions(-) delete mode 100644 lab-windows/signal_gen.ipynb (limited to 'lab-windows/signal_gen.ipynb') diff --git a/lab-windows/signal_gen.ipynb b/lab-windows/signal_gen.ipynb deleted file mode 100644 index ea11ab0..0000000 --- a/lab-windows/signal_gen.ipynb +++ /dev/null @@ -1,298 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import struct\n", - "import random\n", - "import itertools\n", - "import datetime\n", - "import multiprocessing\n", - "from collections import defaultdict\n", - "import json\n", - "\n", - "from matplotlib import pyplot as plt\n", - "import matplotlib\n", - "import numpy as np\n", - "from scipy import signal as sig\n", - "from scipy import fftpack as fftpack\n", - "import ipywidgets\n", - "\n", - "import pydub\n", - "\n", - "from tqdm.notebook import tqdm\n", - "import colorednoise\n", - "\n", - "np.set_printoptions(linewidth=240)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib widget" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py\n", - "preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]],\n", - " 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], \n", - " 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]}\n", - "\n", - "def gen_gold(seq1, seq2):\n", - " gold = [seq1, seq2]\n", - " for shift in range(len(seq1)):\n", - " gold.append(seq1 ^ np.roll(seq2, -shift))\n", - " return gold\n", - "\n", - "def gold(n):\n", - " n = int(n)\n", - " if not n in preferred_pairs:\n", - " raise KeyError('preferred pairs for %s bits unknown' % str(n))\n", - " t0, t1 = preferred_pairs[n]\n", - " (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1)\n", - " return gen_gold(seq0, seq1)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "def modulate(data, nbits=5, pad=True):\n", - " # 0, 1 -> -1, 1\n", - " mask = np.array(gold(nbits))*2 - 1\n", - " \n", - " sel = mask[data>>1]\n", - " data_lsb_centered = ((data&1)*2 - 1)\n", - "\n", - " signal = (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2\n", - " if pad:\n", - " return np.hstack([ np.zeros(len(mask)), signal, np.zeros(len(mask)) ])\n", - " else:\n", - " return signal" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "def generate_noisy_signal(\n", - " test_duration=32,\n", - " test_nbits=5,\n", - " test_decimation=10,\n", - " test_signal_amplitude=200e-3,\n", - " noise_level=10e-3):\n", - "\n", - " #test_data = np.random.RandomState(seed=0).randint(0, 2 * (2**test_nbits), test_duration)\n", - " #test_data = np.array([0, 1, 2, 3] * 50)\n", - " test_data = np.array(range(test_duration))\n", - " signal = np.repeat(modulate(test_data, test_nbits, pad=False) * 2.0 - 1, test_decimation) * test_signal_amplitude\n", - " noise = colorednoise.powerlaw_psd_gaussian(1, len(signal)*2) * noise_level\n", - " noise[-int(1.5*len(signal)):][:len(signal)] += signal\n", - "\n", - " return noise+50\n", - " #with open(f'mains_sim_signals/dsss_test_noisy_padded.bin', 'wb') as f:\n", - " # for e in noise:\n", - " # f.write(struct.pack(']" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(generate_noisy_signal())" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "with open('data/ref_sig_audio_test3.bin', 'wb') as f:\n", - " for x in generate_noisy_signal():\n", - " f.write(struct.pack('f', x))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def synthesize_sine(freqs, freqs_sampling_rate=10.0, output_sampling_rate=44100):\n", - " duration = len(freqs) / freqs_sampling_rate # seconds\n", - " afreq_out = np.interp(np.linspace(0, duration, int(duration*output_sampling_rate)), np.linspace(0, duration, len(freqs)), freqs)\n", - " return np.sin(np.cumsum(2*np.pi * afreq_out / output_sampling_rate))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "test_sig = synthesize_sine(generate_noisy_signal())" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5171d9dbbe5048e2b32c3cf7f7d03744", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(test_sig[:44100])" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "def save_signal_flac(filename, signal, sampling_rate=44100):\n", - " signal -= np.min(signal)\n", - " signal /= np.max(signal)\n", - " signal -= 0.5\n", - " signal *= 2**16 - 1\n", - " le_bytes = signal.astype(np.int16).tobytes()\n", - " seg = pydub.AudioSegment(data=le_bytes, sample_width=2, frame_rate=sampling_rate, channels=1)\n", - " seg.export(filename, format='flac')" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "save_signal_flac('synth_sig_test_0123_02.flac', synthesize_sine(generate_noisy_signal(), freqs_sampling_rate=10.0 * 100/128, output_sampling_rate=44100))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def emulate_adc_signal(adc_bits=12, adc_offset=0.4, adc_amplitude=0.25, freq_sampling_rate=10.0, output_sampling_rate=1000, **kwargs):\n", - " signal = synthesize_sine(generate_noisy_signal(), freq_sampling_rate, output_sampling_rate)\n", - " signal = signal*adc_amplitude + adc_offset\n", - " smin, smax = np.min(signal), np.max(signal)\n", - " if smin < 0.0 or smax > 1.0:\n", - " raise UserWarning('Amplitude or offset too large: Signal out of bounds with min/max [{smin}, {smax}] of ADC range')\n", - " signal *= 2**adc_bits -1\n", - " return signal" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def save_adc_signal(fn, signal, dtype=np.uint16):\n", - " with open(fn, 'wb') as f:\n", - " f.write(signal.astype(dtype).tobytes())" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "save_adc_signal('emulated_adc_readings_01.bin', emulate_adc_signal(freq_sampling_rate=10.0 * 100/128))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "labenv", - "language": "python", - "name": "labenv" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} -- cgit