From 809d6eeddc1f9f822a11d946245827be74eae42c Mon Sep 17 00:00:00 2001 From: jaseg Date: Thu, 20 Feb 2020 17:18:39 +0000 Subject: Add some graphs, add frequency spectra comparison compare between commercial measurements from Dr. Gobmaier GmbH and ours. Turns out we agree! --- lab-windows/grid_scope.ipynb | 675 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 675 insertions(+) create mode 100644 lab-windows/grid_scope.ipynb (limited to 'lab-windows/grid_scope.ipynb') diff --git a/lab-windows/grid_scope.ipynb b/lab-windows/grid_scope.ipynb new file mode 100644 index 0000000..9f53906 --- /dev/null +++ b/lab-windows/grid_scope.ipynb @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import sqlite3\n", + "import struct\n", + "import datetime\n", + "import scipy.fftpack\n", + "from scipy import signal as sig\n", + "\n", + "import matplotlib\n", + "from matplotlib import pyplot as plt\n", + "from matplotlib import patches\n", + "import numpy as np\n", + "from scipy import signal, optimize\n", + "from tqdm.notebook import tnrange, tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "db = sqlite3.connect('/mnt/c/Users/jaseg/shared/waveform-raspi.sqlite3')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run 000: 2020-01-31 18:05:24 - 2020-02-01 00:13:45 ( 6:08:21.589, 22126080sp)\n" + ] + } + ], + "source": [ + "for run_id, start, end, count in db.execute('SELECT run_id, MIN(rx_ts), MAX(rx_ts), COUNT(*) FROM measurements GROUP BY run_id'):\n", + " foo = lambda x: datetime.datetime.fromtimestamp(x/1000)\n", + " start, end = foo(start), foo(end)\n", + " print(f'Run {run_id:03d}: {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S} ({str(end-start)[:-3]:>13}, {count*32:>9d}sp)')\n", + "last_run, n_records = run_id, count\n", + "sampling_rate = 1000.0" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "par = lambda *rs: 1/sum(1/r for r in rs) # resistor parallel calculation\n", + "\n", + "# FIXME: These are for the first prototype only!\n", + "vmeas_source_impedance = 330e3\n", + "vmeas_source_scale = 0.5\n", + "\n", + "vcc = 15.0\n", + "vmeas_div_high = 27e3\n", + "vmeas_div_low = par(4.7e3, 10e3)\n", + "vmeas_div_voltage = vcc * vmeas_div_low / (vmeas_div_high + vmeas_div_low)\n", + "vmeas_div_impedance = par(vmeas_div_high, vmeas_div_low)\n", + "\n", + "#vmeas_overall_factor = vmeas_div_impedance / (vmeas_source_impedance + vmeas_div_impedance)\n", + "v0 = 1.5746\n", + "v100 = 2.004\n", + "vn100 = 1.1452\n", + "\n", + "adc_vcc = 3.3 # V\n", + "adc_fullscale = 4095\n", + "\n", + "adc_val_to_voltage_factor = 1/adc_fullscale * adc_vcc\n", + "\n", + "adc_count_to_vmeas = lambda x: (x*adc_val_to_voltage_factor - v0) / (v100-v0) * 100" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f960454ab93244db97e039ae7ebd02ee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=691440.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "limit = n_records\n", + "record_size = 32\n", + "skip_dropped_sections = False\n", + "\n", + "data = np.zeros(limit*record_size)\n", + "data[:] = np.nan\n", + "\n", + "last_seq = None\n", + "write_index = 0\n", + "for i, (seq, chunk) in tqdm(enumerate(db.execute(\n", + " 'SELECT seq, data FROM measurements WHERE run_id = ? ORDER BY rx_ts LIMIT ? OFFSET ?',\n", + " (last_run, limit, n_records-limit))), total=n_records):\n", + " \n", + " if last_seq is None or seq == (last_seq + 1)%0xffff:\n", + " last_seq = seq\n", + " idx = write_index if skip_dropped_sections else i\n", + " data[idx*record_size:(idx+1)*record_size] = np.frombuffer(chunk, dtype=' last_seq:\n", + " last_seq = seq\n", + " # nans = np.empty((record_size,))\n", + " # nans[:] = np.nan\n", + " # data = np.append(data, nans) FIXME\n", + " \n", + "data = (data * adc_val_to_voltage_factor - v0) / (v100-v0) * 100" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "227.68691180713367" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_not_nan = data[~np.isnan(data)]\n", + "np.sqrt(np.mean(np.square(data_not_nan)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "264a9f8478e449289c1592c9595dc6cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n", + "fig.tight_layout(pad=3, h_pad=0.1)\n", + "\n", + "range_start, range_len = -300, 60 # [s]\n", + "\n", + "data_slice = data[ int(range_start * sampling_rate) : int((range_start + range_len) * sampling_rate) ]\n", + "\n", + "top.grid()\n", + "top.plot(np.linspace(0, range_len, int(range_len*sampling_rate)), data_slice, lw=1.0)\n", + "top.set_xlim([range_len/2-0.25, range_len/2+0.25])\n", + "mean = np.mean(data_not_nan)\n", + "rms = np.sqrt(np.mean(np.square(data_not_nan - mean)))\n", + "peak = np.max(np.abs(data_not_nan - mean))\n", + "top.axhline(mean, color='red')\n", + "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", + "top.text(0, mean, f'mean: {mean:.3f}', color='white', bbox=bbox)\n", + "top.text(0.98, 0.2, f'V_RMS: {rms:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", + "top.text(0.98, 0.1, f'V_Pk: {peak:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", + "\n", + "bottom.grid()\n", + "bottom.specgram(data_slice, Fs=sampling_rate)\n", + "top.set_ylabel('U [V]')\n", + "bottom.set_ylabel('F [Hz]')\n", + "bottom.set_xlabel('t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "fs = sampling_rate # Hz\n", + "ff = 50 # Hz\n", + "\n", + "analysis_periods = 10\n", + "window_len = fs * analysis_periods/ff\n", + "nfft_factor = 4\n", + "sigma = window_len/8 # samples\n", + "\n", + "f, t, Zxx = signal.stft(data,\n", + " fs = fs,\n", + " window=('gaussian', sigma),\n", + " nperseg = window_len,\n", + " nfft = window_len * nfft_factor)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c2382eb8e124ef9b29546ecaed3e155", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9, 3))\n", + "fig.tight_layout(pad=2, h_pad=0.1)\n", + "\n", + "ax.pcolormesh(t[-200:-100], f[:250], np.abs(Zxx[:250,-200:-100]))\n", + "ax.set_title(f\"Run {last_run}\", pad=-20, color='white')\n", + "ax.grid()\n", + "ax.set_ylabel('f [Hz]')\n", + "ax.set_ylim([30, 75]) # Hz\n", + "ax.set_xlabel('simulation time t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d29e8ee5bf7f4e94a1749239aec24d6d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=221260.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "f_t = t\n", + "\n", + "n_f, n_t = Zxx.shape\n", + "# start, stop = 180, 220\n", + "# start, stop = 90, 110\n", + "# start, stop = 15, 35\n", + "# bounds_f = slice(start // 4 * nfft_factor, stop // 4 * nfft_factor)\n", + "f_min, f_max = 30, 70 # Hz\n", + "bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n", + "\n", + "\n", + "f_mean = np.zeros(Zxx.shape[1])\n", + "for le_t in tnrange(1, Zxx.shape[1] - 1):\n", + " frame_f = f[bounds_f]\n", + " frame_step = frame_f[1] - frame_f[0]\n", + " time_step = f_t[1] - f_t[0]\n", + " #if t == 10:\n", + " # axs[-1].plot(frame_f, frame_Z)\n", + " frame_Z = np.abs(Zxx[bounds_f, le_t])\n", + " # frame_f = f[180:220]\n", + " # frame_Z = np.abs(Zxx[180:220, 40])\n", + " # frame_f = f[15:35]\n", + " # frame_Z = np.abs(Zxx[15:35, 40])\n", + " # plt.plot(frame_f, frame_Z)\n", + "\n", + " # peak_f = frame_f[np.argmax(frame)]\n", + " # plt.axvline(peak_f, color='red')\n", + "\n", + "# def gauss(x, *p):\n", + "# A, mu, sigma, o = p\n", + "# return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + o\n", + "\n", + " def gauss(x, *p):\n", + " A, mu, sigma = p\n", + " return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n", + "\n", + " f_start = frame_f[np.argmax(frame_Z)]\n", + " A_start = np.max(frame_Z)\n", + " p0 = [A_start, f_start, 1.]\n", + " try:\n", + " coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n", + " # plt.plot(frame_f, gauss(frame_f, *coeff))\n", + " #print(coeff)\n", + " A, mu, sigma, *_ = coeff\n", + " f_mean[le_t] = mu\n", + " except Exception:\n", + " f_mean[le_t] = np.nan" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47c40f28b5a34a94b4a631fd62107521", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n", + "fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n", + "\n", + "label = f'Run {last_run}'\n", + "ax.plot(f_t[1:-1], f_mean[1:-1])\n", + "\n", + "# b, a = signal.butter(3,\n", + "# 1/5, # Hz\n", + "# btype='lowpass',\n", + "# fs=1/time_step)\n", + "# filtered = signal.lfilter(b, a, f_mean[1:-1], axis=0)\n", + "# ax.plot(f_t[1:-1], filtered)\n", + "\n", + "ax.set_title(label, pad=-20)\n", + "ax.set_ylabel('f [Hz]')\n", + "ax.grid()\n", + "if not label in ['off_frequency', 'sweep_phase_steps']:\n", + " ax.set_ylim([49.90, 50.10])\n", + " var = np.var(f_mean[~np.isnan(f_mean)][1:-1])\n", + " ax.text(0.5, 0.08, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", + " ax.text(0.5, 0.15, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", + "\n", + "# ax.text(0.5, 0.2, f'filt. σ²={np.var(filtered) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n", + "else:\n", + " f_min, f_max = min(f_mean[1:-1]), max(f_mean[1:-1])\n", + " delta = f_max - f_min\n", + " ax.set_ylim(f_min - delta * 0.1, f_max + delta * 0.3)\n", + "\n", + "for i in np.where(np.isnan(f_mean))[0]:\n", + " ax.axvspan(f_t[i], f_t[i+1], color='lightblue')\n", + "\n", + "ax.set_xlabel('recording time t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a4cb62296df496bad37d93547d3c26a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f_copy = np.copy(f_mean[1:-1])\n", + "f_copy[np.isnan(f_copy)] = np.mean(f_copy[~np.isnan(f_copy)])\n", + "b, a = signal.cheby2(7, 86, 100, 'low', output='ba', fs=1000)\n", + "filtered = signal.lfilter(b, a, f_copy)\n", + "\n", + "b2, a2 = signal.cheby2(3, 30, 1, 'high', output='ba', fs=1000)\n", + "filtered2 = signal.lfilter(b2, a2, filtered)\n", + "\n", + "fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n", + "ax1.plot(f_t[1:-1], f_copy, color='lightgray')\n", + "ax1.set_ylim([49.90, 50.10])\n", + "ax1.grid()\n", + "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", + "ax1.xaxis.set_major_formatter(formatter)\n", + "zoom_offx = 7000 # s\n", + "zoom_len = 300 # s\n", + "ax1.set_xlim([zoom_offx, zoom_offx + zoom_len])\n", + "\n", + "ax1.plot(f_t[1:-1], filtered, color='orange')\n", + "ax1r = ax1.twinx()\n", + "ax1r.plot(f_t[1:-1], filtered2, color='red')\n", + "ax1r.set_ylim([-0.015, 0.015])\n", + "ax1.set_title(f'Zoomed trace ({datetime.timedelta(seconds=zoom_len)})', pad=-20)\n", + "\n", + "\n", + "ax2.set_title(f'Run {last_run}')\n", + "ax2.plot(f_t[1:-1], f_copy, color='orange')\n", + "\n", + "ax2r = ax2.twinx()\n", + "ax2r.set_ylim([-0.1, 0.1])\n", + "ax2r.plot(f_t[1:-1], filtered2, color='red')\n", + "#ax2.plot(f_t[1:-1], filtered, color='orange', zorder=1)\n", + "ax2.set_ylim([49.90, 50.10])\n", + "ax2.set_xlim([0, f_t[-2]])\n", + "ax2.grid()\n", + "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", + "ax2.xaxis.set_major_formatter(formatter)\n", + "\n", + "ax2.legend(handles=[\n", + " patches.Patch(color='lightgray', label='Raw frequency'),\n", + " patches.Patch(color='orange', label='low-pass filtered'),\n", + " patches.Patch(color='red', label='band-pass filtered')])\n", + "\n", + "#ax2r.spines['right'].set_color('red')\n", + "ax2r.yaxis.label.set_color('red')\n", + "#ax2r.tick_params(axis='y', colors='red')\n", + "\n", + "#ax1r.spines['right'].set_color('red')\n", + "ax1r.yaxis.label.set_color('red')\n", + "#ax1r.tick_params(axis='y', colors='red')\n", + "\n", + "ax1.set_ylabel('f [Hz]')\n", + "ax1r.set_ylabel('band-pass Δf [Hz]')\n", + "ax2.set_ylabel('f [Hz]')\n", + "ax2r.set_ylabel('band-pass Δf [Hz]')\n", + "\n", + "# Cut out first 10min of filtered data to give filters time to settle\n", + "rms_slice = filtered2[np.where(f_t[1:] > 10*60)[0][0]:]\n", + "rms = np.sqrt(np.mean(np.square(rms_slice)))\n", + "ax1.text(0.5, 0.1, f'RMS (band-pass): {rms*1e3:.3f}mHz', transform=ax1.transAxes, color='white', bbox=bbox, ha='center')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "chunk_size = 256\n", + "#\n", + "#with open('filtered_freq.bin', 'wb') as f:\n", + "# for chunk in range(0, len(rms_slice), chunk_size):\n", + "# out_data = rms_slice[chunk:chunk+chunk_size]\n", + "# f.write(struct.pack(f'{len(out_data)}f', *out_data))\n", + "# \n", + "#with open('raw_freq.bin', 'wb') as f:\n", + "# for chunk in range(0, len(f_copy), chunk_size):\n", + "# out_data = f_copy[chunk:chunk+chunk_size]\n", + "# f.write(struct.pack(f'{len(out_data)}f', *out_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":17: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", + " fig, ax = plt.subplots(figsize=(9,5))\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3809a1a83b5844e3906f1d74bcd15b5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/user/safety-reset/lab-windows/env/lib/python3.8/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { + "data": { + "text/plain": [ + "5.0" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = f_copy\n", + "ys = scipy.fftpack.fft(data)\n", + "ys = scipy.fftpack.fftshift(ys)\n", + "#ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n", + "#s = 3\n", + "\n", + "#ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n", + "\n", + "#xs = np.linspace(0, 5, len(data)//2)\n", + "xs = np.linspace(-5, 5, len(data))\n", + "\n", + "#ys *= 2*np.pi*xs[s//2:-s//2+1]\n", + "#ys *= xs\n", + "\n", + "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n", + "\n", + "fig, ax = plt.subplots(figsize=(9,5))\n", + "#ax.loglog(xs[s//2:-s//2+1], ys)\n", + "#ax.loglog(xs[s//2:-s//2+1], ys)\n", + "#ax.loglog(xs, ys)\n", + "#ys[len(xs)//2] = 0\n", + "#ax.set_yscale('log')\n", + "ax.plot(xs, ys)\n", + "#ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n", + "ax.grid()\n", + "#plt.show()\n", + "xs[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":20: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", + " fig, ax = plt.subplots()\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d137ae59ed7947ce8e3f7295e102f2f0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(1.6666666666666667e-05, 0.5)" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Number of samplepoints\n", + "N = len(data)\n", + "# sample spacing\n", + "T = 1.0 / 10.0\n", + "x = np.linspace(0.0, N*T, N)\n", + "yf = scipy.fftpack.fft(data)\n", + "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n", + "\n", + "yf = 2.0/N * np.abs(yf[:N//2])\n", + "\n", + "average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n", + "\n", + "average_width = 6\n", + "average_start = 20\n", + "yf = average_from(yf, average_start, average_width)\n", + "xf = average_from(xf, average_start, average_width)\n", + "yf = average_from(yf, 200, average_width)\n", + "xf = average_from(xf, 200, average_width)\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.loglog(xf, yf)\n", + "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n", + "ax.set_xlabel('T in s')\n", + "ax.set_ylabel('Amplitude Δf')\n", + "ax.grid()\n", + "ax.set_xlim([1/60000, 0.5])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "labenv", + "language": "python", + "name": "labenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} -- cgit