diff options
Diffstat (limited to 'tools/dsss_experiments-ber.py')
-rw-r--r-- | tools/dsss_experiments-ber.py | 468 |
1 files changed, 468 insertions, 0 deletions
diff --git a/tools/dsss_experiments-ber.py b/tools/dsss_experiments-ber.py new file mode 100644 index 0000000..02a2c50 --- /dev/null +++ b/tools/dsss_experiments-ber.py @@ -0,0 +1,468 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[17]: + + +import numpy as np +import numbers +import math +from scipy import signal as sig +import scipy.fftpack +import random +import struct +import random +import ipywidgets +import itertools +import datetime +import multiprocessing +import traceback +from collections import defaultdict +import json + +from tqdm import tqdm +import colorednoise + +np.set_printoptions(linewidth=240) + + + +sampling_rate = 10 # sp/s + + +# In[4]: + + +# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py +preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]], + 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], + 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]} + +def gen_gold(seq1, seq2): + gold = [seq1, seq2] + for shift in range(len(seq1)): + gold.append(seq1 ^ np.roll(seq2, -shift)) + return gold + +def gold(n): + n = int(n) + if not n in preferred_pairs: + raise KeyError('preferred pairs for %s bits unknown' % str(n)) + t0, t1 = preferred_pairs[n] + (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1) + return gen_gold(seq0, seq1) + + +# In[5]: + + +def modulate(data, nbits=5): + # 0, 1 -> -1, 1 + mask = np.array(gold(nbits))*2 - 1 + + sel = mask[data>>1] + data_lsb_centered = ((data&1)*2 - 1) + + signal = (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2 + return np.hstack([ np.zeros(len(mask)), signal, np.zeros(len(mask)) ]) + + +# In[6]: + + +def correlate(sequence, nbits=5, decimation=1, mask_filter=lambda x: x): + mask = np.tile(np.array(gold(nbits))[:,:,np.newaxis]*2 - 1, (1, 1, decimation)).reshape((2**nbits + 1, (2**nbits-1) * decimation)) + + sequence -= np.mean(sequence) + + return np.array([np.correlate(sequence, row, mode='full') for row in mask]) + + +# In[7]: + + +def load_noise_meas_params(capture_file): + with open(capture_file, 'rb') as f: + meas_data = np.copy(np.frombuffer(f.read(), dtype='float32')) + print('mean:', np.mean(meas_data), 'len:', len(meas_data)) + meas_data -= np.mean(meas_data) + return {'meas_data': meas_data} + +def mains_noise_measured(n, meas_data): + last_valid = len(meas_data) - n + start = np.random.randint(last_valid) + return meas_data[start:start+n] + +def load_noise_synth_params(specfile): + with open(specfile) as f: + d = json.load(f) + return {'spl_x': np.linspace(*d['x_spec']), + 'spl_N': d['x_spec'][2], + 'psd_spl': (d['t'], d['c'], d['k']) } + +def mains_noise_synthetic(n, psd_spl, spl_N, spl_x): + noise = np.random.normal(size=spl_N) * 2 + spec = scipy.fftpack.fft(noise) **2 + + spec *= np.exp(scipy.interpolate.splev(spl_x, psd_spl)) + + spec **= 1/2 + + renoise = scipy.fftpack.ifft(spec) + return renoise[10000:][:n] + +# In[8]: + + +def generate_test_signal(duration, nbits=6, signal_amplitude=2.0e-3, decimation=10, seed=0): + test_data = np.random.RandomState(seed=seed).randint(0, 2 * (2**nbits), duration) + + signal = np.repeat(modulate(test_data, nbits) * 2.0 - 1, decimation) * signal_amplitude + noise = mains_noise(len(signal)) + + return test_data, signal + noise + + +# In[9]: + + +nonlinear_distance = lambda x: 100**(2*np.abs(0.5-x%1)) / (np.abs(x)+3)**2 * (np.clip(np.abs(x), 0, 0.5) * 2)**5 + +# In[11]: + + +noprint = lambda *args, **kwargs: None + + +# In[12]: + + +def run_ser_test(sample_duration=128, nbits=6, signal_amplitude=2.0e-3, decimation=10, threshold_factor=4.0, power_avg_width=2.5, max_lookahead=6.5, pol_score_factor=1.0, seed=0, ax=None, print=print, ser_maxshift=3, debug_range=None): + + test_data, signal = generate_test_signal(sample_duration, nbits, signal_amplitude, decimation, seed) + cor_an = correlate(signal, nbits=nbits, decimation=decimation) + + power_avg_width = int(power_avg_width * (2**nbits - 1) * decimation) + + bit_period = (2**nbits) * decimation + peak_group_threshold = 0.05 * bit_period + hole_patching_threshold = 0.01 * bit_period + + cwt_res = np.array([ sig.cwt(row, sig.ricker, [0.73 * decimation]).flatten() for row in cor_an ]) + if ax: + ax.grid() + ax.plot(cwt_res.T) + + th = np.array([ np.convolve(np.abs(row), np.ones((power_avg_width,))/power_avg_width, mode='same') for row in cwt_res ]) + + def compare_th(elem): + idx, (th, val) = elem + #print('compare_th:', th.shape, val.shape) + return np.any(np.abs(val) > th*threshold_factor) + + peaks = [ list(group) for val, group in itertools.groupby(enumerate(zip(th.T, cwt_res.T)), compare_th) if val ] + peaks_processed = [] + peak_group = [] + for group in peaks: + pos = np.mean([idx for idx, _val in group]) + #pol = np.mean([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group]) + pol = max([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group], key=abs) + pol_idx = np.argmax(np.bincount([ np.argmax(np.abs(val)) for _idx, (_th, val) in group ])) + peaks_processed.append((pos, pol, pol_idx)) + #print(f'group', pos, pol, pol_idx) + #for pol, (_idx, (_th, val)) in zip([max(val.min(), val.max(), key=abs) for _idx, (_th, val) in group], group): + # print(' ', pol, val) + #if ax: + # ax.axvline(pos, color='cyan', alpha=0.3) + msg = f'peak at {pos} = {pol} idx {pol_idx}: ' + + if peak_group: + msg += f'continuing previous group: {peak_group[-1]},' + group_start, last_pos, last_pol, peak_pos, last_pol_idx = peak_group[-1] + + if abs(pol) > abs(last_pol): + msg += 'larger, ' + if ax: + ax.axvline(pos, color='magenta', alpha=0.5) + peak_group[-1] = (group_start, pos, pol, pos, pol_idx) + + else: + msg += 'smaller, ' + if ax: + ax.axvline(pos, color='blue', alpha=0.5) + peak_group[-1] = (group_start, pos, last_pol, peak_pos, last_pol_idx) + else: + last_pos = None + + if not peak_group or pos - last_pos > peak_group_threshold: + msg += 'terminating, ' + if peak_group: + msg += f'previous group: {peak_group[-1]},' + peak_pos = peak_group[-1][3] + if ax: + ax.axvline(peak_pos, color='red', alpha=0.6) + #ax3.text(peak_pos-20, 2.0, f'{0 if pol < 0 else 1}', horizontalalignment='right', verticalalignment='center', color='black') + + msg += f'new group: {(pos, pos, pol, pos, pol_idx)} ' + peak_group.append((pos, pos, pol, pos, pol_idx)) + if ax: + ax.axvline(pos, color='cyan', alpha=0.5) + + if debug_range: + low, high = debug_range + if low < pos < high: + print(msg) + print(group) + + avg_peak = np.mean(np.abs(np.array([last_pol for _1, _2, last_pol, _3, _4 in peak_group]))) + print('avg_peak', avg_peak) + + noprint = lambda *args, **kwargs: None + def mle_decode(peak_groups, print=print): + peak_groups = [ (pos, pol, idx) for _1, _2, pol, pos, idx in peak_groups ] + candidates = [ (abs(pol)/avg_peak, [(pos, pol, idx)]) for pos, pol, idx in peak_groups if pos < bit_period*2.5 ] + + while candidates: + chain_candidates = [] + for chain_score, chain in candidates: + pos, ampl, _idx = chain[-1] + score_fun = lambda pos, npos, npol: pol_score_factor*abs(npol)/avg_peak + nonlinear_distance((npos-pos)/bit_period) + next_candidates = sorted([ (score_fun(pos, npos, npol), npos, npol, nidx) for npos, npol, nidx in peak_groups if pos < npos < pos + bit_period*max_lookahead ], reverse=True) + + print(f' candidates for {pos}, {ampl}:') + for score, npos, npol, nidx in next_candidates: + print(f' {score:.4f} {npos:.2f} {npol:.2f} {nidx:.2f}') + + nch, cor_len = cor_an.shape + if cor_len - pos < 1.5*bit_period or not next_candidates: + score = sum(score_fun(opos, npos, npol) for (opos, _opol, _oidx), (npos, npol, _nidx) in zip(chain[:-1], chain[1:])) / len(chain) + yield score, chain + + else: + print('extending') + for score, npos, npol, nidx in next_candidates[:3]: + if score > 0.5: + new_chain_score = chain_score * 0.9 + score * 0.1 + chain_candidates.append((new_chain_score, chain + [(npos, npol, nidx)])) + print('chain candidates:') + for score, chain in sorted(chain_candidates, reverse=True): + print(' ', [(score, [(f'{pos:.2f}', f'{pol:.2f}') for pos, pol, _idx in chain])]) + candidates = [ (chain_score, chain) for chain_score, chain in sorted(chain_candidates, reverse=True)[:10] ] + + res = sorted(mle_decode(peak_group, print=noprint), reverse=True) + #for i, (score, chain) in enumerate(res): + # print(f'Chain {i}@{score:.4f}: {chain}') + (_score, chain), *_ = res + + def viz(chain, peaks): + last_pos = None + for pos, pol, nidx in chain: + if last_pos: + delta = int(round((pos - last_pos) / bit_period)) + if delta > 1: + print(f'skipped {delta-1} symbols at {pos}/{last_pos}') + + # Hole patching routine + for i in range(1, delta): + est_pos = last_pos + (pos - last_pos) / delta * i + + icandidates = [ (ipos, ipol, iidx) for ipos, ipol, iidx in peaks if abs(est_pos - ipos) < hole_patching_threshold ] + if not icandidates: + yield None + continue + + ipos, ipol, iidx = max(icandidates, key = lambda e: abs(e[1])) + + decoded = iidx*2 + (0 if ipol < 0 else 1) + print(f'interpolating, last_pos={last_pos}, delta={delta}, pos={pos}, est={est_pos} dec={decoded}') + yield decoded + + decoded = nidx*2 + (0 if pol < 0 else 1) + yield decoded + if ax: + ax.axvline(pos, color='blue', alpha=0.5) + ax.text(pos-20, 0.0, f'{decoded}', horizontalalignment='right', verticalalignment='center', color='black') + + last_pos = pos + + decoded = list(viz(chain, peaks_processed)) + print('decoding [ref|dec]:') + match_result = [] + for shift in range(-ser_maxshift, ser_maxshift): + msg = f'=== shift = {shift} ===\n' + failures = -shift if shift < 0 else 0 # we're skipping the first $shift symbols + a = test_data if shift > 0 else test_data[-shift:] + b = decoded if shift < 0 else decoded[shift:] + for i, (ref, found) in enumerate(itertools.zip_longest(a, b)): + if ref is None: # end of signal + break + msg += f'{ref if ref is not None else -1:>3d}|{found if found is not None else -1:>3d} {"✔" if ref==found else "✘" if found else " "} ' + if ref != found: + failures += 1 + if i%8 == 7: + msg += '\n' + match_result.append((failures, msg)) + failures, msg = min(match_result, key=lambda e: e[0]) + print(msg) + ser = failures/len(test_data) + print(f'Symbol error rate e={ser}: {failures}/{len(test_data)}') + br = sampling_rate / decimation / (2**nbits) * nbits * (1 - ser) * 3600 + print(f'maximum bitrate r={br} b/h') + return ser, br + + +# In[13]: + + +default_params = dict( + power_avg_width=2.5, + max_lookahead=6.5) + +def calculate_ser(reps, v, seed, nbits, thf, duration, decimation): + params = dict(default_params) + params['signal_amplitude'] = v + params['decimation'] = decimation + params['nbits'] = nbits + params['threshold_factor'] = thf + + out = [] + for _rep in range(reps): + sers, brs = [], [] + try: + ser, br = run_ser_test(**params, sample_duration=duration, print=noprint, seed=seed) + out.append((ser, br, None)) + except Exception as e: + #traceback.print_exc() + out.append((None, None, f'got {e} seed {seed:08x} params {params}')) + return out + +import argparse +parser = argparse.ArgumentParser() +parser.add_argument('-i', '--index', type=int, default=0) +parser.add_argument('-b', '--batches', type=int, default=1) +parser.add_argument('-z', '--chunksize', type=int, default=50) +parser.add_argument('-r', '--run-id', type=str, default='default') +group = parser.add_mutually_exclusive_group() +group.add_argument('-s', '--synthetic-noise', nargs='?', const='grid_freq_psd_spl_108pt.json', type=str) +group.add_argument('-m', '--measured-noise', nargs='?', default='fmeas_export_ocxo_2day.bin', const='fmeas_export_ocxo_2day.bin', type=str) +args = parser.parse_args() + +# scheduled = [ +# (5, 1.5, 50, 50, 128), +# (6, 2.0, 50, 50, 128), +# (6, 2.5, 50, 50, 128), +# (6, 3.0, 50, 50, 128), +# (6, 3.5, 50, 50, 128), +# (6, 4.0, 50, 50, 128), +# (6, 4.5, 50, 50, 128), +# (6, 5.0, 50, 50, 128), +# (6, 5.5, 50, 50, 128), +# (6, 6.0, 50, 50, 128), +# (6, 6.5, 50, 50, 128), +# (6, 7.0, 50, 50, 128), +# (6, 7.5, 50, 50, 128), +# (6, 8.0, 50, 50, 128), +# (6, 8.5, 50, 50, 128), +# (6, 9.0, 50, 50, 128), +# (6, 9.5, 50, 50, 128), +# (6, 10.0, 50, 50, 128), +# ] +#scheduled = [ (5, 4.0, 50, 70, 100, dec) for dec in list(range(19)) + [int(round(20 * 10**dec)) for dec in np.linspace(0, 0.7, 20)] ] #int(round(1 * 10**dec))) for dec in np.linspace(0, 2, 30) ] + +#param_name = 'par101' +#scheduled = [ (nbits, thf, 100, 30, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ]# int(round(3 * 10**dec)) for dec in np.linspace(0, 2, 30) ] + +#param_name = 'par102' +#scheduled = [ (nbits, thf, 1000, 50, duration, int(round(3 * 10**dec))) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] for dec in np.linspace(0, 2, 30) ] + +#param_name = 'par103' +#scheduled = [ (nbits, thf, 1000, 50, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ] + +#param_name = 'par105' +#scheduled = [ (nbits, thf, 1000, 30, duration, int(round(3 * 10**dec))) for thf in [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0, 2, 30) ] + +#param_name = 'dbg106' +#scheduled = [ (nbits, thf, 20, 15, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128)] ] + +#param_name = 'par107' +#scheduled = [ (nbits, thf, 100, 30, duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128), (7, 64), (8, 64)] ] + +#param_name = 'par108' +#scheduled = [ (nbits, thf, 100, 30, duration, int(round(3 * 10**dec))) for thf in [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0, 2, 30) ] + +#param_name = 'par110' +#scheduled = [ (nbits, thf, 100, 30, duration, int(round(1 * 10**dec))) for thf in [3.5, 4.0, 4.5, 5.0] for nbits, duration in [(5, 128), (6, 128)] for dec in np.linspace(0.15, 2, 15) ] + +#param_name = 'par111' +#scheduled = [ (nbits, thf, 100, 30, duration, dec) for thf in [3.5, 4.0, 4.5, 5.0] for nbits, duration in [(5, 128), (6, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ] + +# Faster chip duration graph +#param_name = 'par112' +#scheduled = [ (nbits, thf, 50, 30, duration, dec) for thf in [4.0] for nbits, duration in [(5, 100)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ] + +#param_name = 'par113' +#scheduled = [ (nbits, thf, 100, 30, duration, dec) for thf in [4.0, 4.5, 5.0, 5.5] for nbits, duration in [(5, 128), (6, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ] + +#param_name = 'par114' +#scheduled = [ (nbits, thf, 100, 30, duration, dec) for nbits, thf, duration in [(5, 4.0, 128), (6, 5.0, 128)] for dec in [1, 2, 3, 4, 5, 6, 9, 12, 16, 22, 30, 40, 50] ] + +# Extra amplitude for 5 and 6 bit graphs NOTE: accidental duplicate param_name, earlier run is above set, later run this one. +#param_name = 'par114' +param_name = 'par115' +scheduled = [ (nbits, thf, 100, 0.05e-3 * 10 ** np.linspace(0, 3.5, 50), duration, 10) for thf in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] for nbits, duration in [(5, 128), (6, 128)] ] + +random.Random(0).shuffle(scheduled) +batch = scheduled[args.index::args.batches] +print('Parameter set name', param_name) + +if args.synthetic_noise is not None: + noise_params = load_noise_synth_params(args.synthetic_noise) + mains_noise = lambda n: mains_noise_synthetic(n, **noise_params) + noise_source = 'synth' +else: + noise_params = load_noise_meas_params(args.measured_noise) + mains_noise = lambda n: mains_noise_measured(n, **noise_params) + noise_source = 'meas' + +def chunked(n, size): + for start in range(0, n, size): + end = min(reps, start + size) + yield start, end + +results = {} +with tqdm(total = 0) as tq: + with multiprocessing.Pool(multiprocessing.cpu_count()) as pool: + #for nbits, thf, reps, points, duration in [(5, 4.0, 50, 25, 128), (6, 4.0, 50, 25, 128), (7, 5.0, 25, 25, 128), (8, 6.0, 25, 25, 64)]: + #for nbits, thf, reps, points, duration in [(6, 4.5, 5, 25, 128), (6, 5.0, 5, 25, 128)]: + for nbits, thf, reps, points, duration, decimation in batch: + st = np.random.RandomState(0) + + if isinstance(points, numbers.Number): + vs = 0.05e-3 * 10 ** np.linspace(0, 2.0, points) + points_id = points + else: + vs = points + points_id = len(vs) + tq.write('scheduled {}reps x {}pt {}b @ th={} t={}sym dec={}sp'.format(reps, points_id, nbits, thf, duration, decimation)) + results[(nbits, thf, reps, points_id, duration, decimation)] = { v: + [ pool.apply_async(calculate_ser, (end - start, v, st.randint(0xffffffff), nbits, thf, duration, decimation), callback=lambda _res: tq.update(end - start)) for start, end in chunked(reps, args.chunksize) ] + for v in vs } + tq.total += len(vs) * reps + tq.refresh() + + tq.write(f'scheduled {tq.total} tasks. waiting...') + pool.close() + pool.join() + + results = [ (key, [ (v, [ x for res in chunks for x in res.get() ]) for v, chunks in series.items() ]) for key, series in results.items() ] + tq.write('done') + + #sers, brs = np.array(sers), np.array(brs) + #ser, std = np.mean(sers), np.std(sers) + #print(f'signal_amplitude={v:<.5f}: ser={ser:<.5f} ±{std:<.5f}, br={np.mean(brs):<.5f}') + #return ser, std + +with open(f'dsss_experiments_res-{param_name}-{noise_source}-{args.run_id}-{args.index}-{datetime.datetime.now():%Y-%m-%d-%H-%M-%S}.json', 'w') as f: + json.dump(results, f) + print(f'Wrote results to {f.name}') + |