summaryrefslogtreecommitdiff
path: root/reset-controller/fw/src/dsss_demod.c
diff options
context:
space:
mode:
Diffstat (limited to 'reset-controller/fw/src/dsss_demod.c')
-rw-r--r--reset-controller/fw/src/dsss_demod.c369
1 files changed, 369 insertions, 0 deletions
diff --git a/reset-controller/fw/src/dsss_demod.c b/reset-controller/fw/src/dsss_demod.c
new file mode 100644
index 0000000..ad44b29
--- /dev/null
+++ b/reset-controller/fw/src/dsss_demod.c
@@ -0,0 +1,369 @@
+
+#include <unistd.h>
+#include <stdbool.h>
+#include <math.h>
+#include <stdlib.h>
+#include <assert.h>
+
+#include <arm_math.h>
+
+#include "freq_meas.h"
+#include "sr_global.h"
+#include "dsss_demod.h"
+#include "simulation.h"
+
+#include "generated/dsss_gold_code.h"
+// #include "generated/dsss_butter_filter.h"
+
+/* Generated CWT wavelet LUT */
+extern const float * const dsss_cwt_wavelet_table;
+
+//struct iir_biquad cwt_filter_bq[DSSS_FILTER_CLEN] = {DSSS_FILTER_COEFF};
+
+void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug);
+static float gold_correlate_step(const size_t ncode, const float a[DSSS_CORRELATION_LENGTH], size_t offx, bool debug);
+static float cwt_convolve_step(const float v[DSSS_WAVELET_LUT_SIZE], size_t offx);
+//static float run_iir(const float x, const int order, const struct iir_biquad q[order], struct iir_biquad_state st[order]);
+//static float run_biquad(float x, const struct iir_biquad *const q, struct iir_biquad_state *const restrict st);
+static void matcher_init(struct matcher_state states[static DSSS_MATCHER_CACHE_SIZE]);
+static void matcher_tick(struct matcher_state states[static DSSS_MATCHER_CACHE_SIZE],
+ uint64_t ts, int peak_ch, float peak_ampl);
+static void group_received(struct dsss_demod_state *st);
+static symbol_t decode_peak(int peak_ch, float peak_ampl);
+
+#ifdef SIMULATION
+void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug) {
+ if (!debug)
+ return;
+
+ if (index) {
+ DEBUG_PRINTN(" %16s [", "");
+ for (size_t i=0; i<len; i++)
+ DEBUG_PRINTN("%8zu ", i);
+ DEBUG_PRINTN("]\n");
+ }
+
+ DEBUG_PRINTN(" %16s: [", name);
+ for (size_t i=0; i<len; i++)
+ DEBUG_PRINTN("%8.5f, ", data[i*stride]);
+ DEBUG_PRINTN("]\n");
+}
+#else
+void debug_print_vector(unused_a const char *name, unused_a size_t len, unused_a const float *data,
+ unused_a size_t stride, unused_a bool index, unused_a bool debug) {}
+#endif
+
+void dsss_demod_init(struct dsss_demod_state *st) {
+ memset(st, 0, sizeof(*st));
+ matcher_init(st->matcher_cache);
+}
+
+void dsss_demod_step(struct dsss_demod_state *st, float new_value, uint64_t ts) {
+ //const float hole_patching_threshold = 0.01 * DSSS_CORRELATION_LENGTH;
+ bool log = false;
+ bool log_groups = false;
+
+ st->signal[st->signal_wpos] = new_value;
+ st->signal_wpos = (st->signal_wpos + 1) % ARRAY_LENGTH(st->signal);
+
+ /* use new, incremented wpos for gold_correlate_step as first element of old data in ring buffer */
+ for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
+ st->correlation[i][st->correlation_wpos] = gold_correlate_step(i, st->signal, st->signal_wpos, false);
+
+ st->correlation_wpos = (st->correlation_wpos + 1) % ARRAY_LENGTH(st->correlation[0]);
+
+ float cwt[DSSS_GOLD_CODE_COUNT];
+ for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
+ cwt[i] = cwt_convolve_step(st->correlation[i], st->correlation_wpos);
+
+ float avg = 0.0f;
+ for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
+ avg += fabsf(cwt[i]);
+ avg /= (float)DSSS_GOLD_CODE_COUNT;
+ if (log) DEBUG_PRINTN("%6zu: %f ", ts, avg);
+ /* FIXME fix this filter */
+ //avg = run_iir(avg, ARRAY_LENGTH(cwt_filter_bq), cwt_filter_bq, st->cwt_filter.st);
+
+ float max_val = st->group.max;
+ int max_ch = st->group.max_ch;
+ int max_ts = st->group.max_ts;
+ bool found = false;
+ for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++) {
+ float val = cwt[i] / avg;
+ if (log) DEBUG_PRINTN("%f ", cwt[i]);
+ if (log) DEBUG_PRINTN("%f ", val);
+
+ if (fabsf(val) > fabsf(max_val)) {
+ max_val = val;
+ max_ch = i;
+ max_ts = ts;
+ }
+
+ if (fabsf(val) > DSSS_THRESHOLD_FACTOR)
+ found = true;
+ }
+ if (log) DEBUG_PRINTN("%f %d ", max_val, found);
+ if (log) DEBUG_PRINTN("\n");
+
+ matcher_tick(st->matcher_cache, ts, max_ch, max_val);
+
+ if (found) {
+ /* Continue ongoing group */
+ st->group.len++;
+ st->group.max = max_val;
+ st->group.max_ch = max_ch;
+ st->group.max_ts = max_ts;
+ return;
+ }
+
+ if (st->group.len == 0)
+ /* We're between groups */
+ return;
+
+ if (log_groups) DEBUG_PRINTN("GROUP: %zu %d %f\n", st->group.max_ts, st->group.max_ch, st->group.max);
+ /* A group ended. Process result. */
+ group_received(st);
+
+ /* reset grouping state */
+ st->group.len = 0;
+ st->group.max_ts = 0;
+ st->group.max_ch = 0;
+ st->group.max = 0.0f;
+}
+
+/* Map a sequence match to a data symbol. This maps the sequence's index number to the 2nd to n+2nd bit of the result,
+ * and maps the polarity of detection to the LSb. 5-bit example:
+ *
+ * [0, S, S, S, S, S, S, P] ; S ^= symbol index (0 - 2^n+1 so we need just about n+1 bit), P ^= symbol polarity
+ *
+ * Symbol polarity is preserved from transmitter to receiver. The symbol index is n+1 bit instead of n bit since we have
+ * 2^n+1 symbols to express, one too many for an n-bit index.
+ */
+symbol_t decode_peak(int peak_ch, float peak_ampl) {
+ return (peak_ch<<1) | (peak_ampl > 0);
+}
+
+void matcher_init(struct matcher_state states[static DSSS_MATCHER_CACHE_SIZE]) {
+ for (size_t i=0; i<DSSS_MATCHER_CACHE_SIZE; i++)
+ states[i].last_phase = -1; /* mark as inactive */
+}
+
+/* TODO make these constants configurable from Makefile */
+const int group_phase_tolerance = (int)(DSSS_CORRELATION_LENGTH * 0.10);
+
+void matcher_tick(struct matcher_state states[static DSSS_MATCHER_CACHE_SIZE], uint64_t ts, int peak_ch, float peak_ampl) {
+ /* TODO make these constants configurable from Makefile */
+ const float skip_sampling_depreciation = 0.2f; /* 0.0 -> no depreciation, 1.0 -> complete disregard */
+ const float score_depreciation = 0.1f; /* 0.0 -> no depreciation, 1.0 -> complete disregard */
+ const int current_phase = ts % DSSS_CORRELATION_LENGTH;
+ const int max_skips = TRANSMISSION_SYMBOLS/4*3;
+ bool debug = false;
+
+ bool header_printed = false;
+ for (size_t i=0; i<DSSS_MATCHER_CACHE_SIZE; i++) {
+ if (states[i].last_phase == -1)
+ continue; /* Inactive entry */
+
+ if (current_phase == states[i].last_phase) {
+ /* Skip sampling */
+ float score = fabsf(peak_ampl) * (1.0f - skip_sampling_depreciation);
+ if (score > states[i].candidate_score) {
+ if (debug && !header_printed) {
+ header_printed = true;
+ DEBUG_PRINTN("windows %zu\n", ts);
+ }
+ if (debug) DEBUG_PRINTN(" skip %zd old=%f new=%f\n", i, states[i].candidate_score, score);
+ /* We win, update candidate */
+ assert(i < DSSS_MATCHER_CACHE_SIZE);
+ states[i].candidate_score = score;
+ states[i].candidate_phase = current_phase;
+ states[i].candidate_data = decode_peak(peak_ch, peak_ampl);
+ states[i].candidate_skips = 1;
+ }
+ }
+
+ /* Note of caution on group_phase_tolerance: Group detection has some latency since a group is only considered
+ * "detected" after signal levels have fallen back below the detection threshold. This means we only get to
+ * process a group a couple ticks after its peak. We have to make sure the window is still open at this point.
+ * This means we have to match against group_phase_tolerance should a little bit loosely.
+ */
+ int phase_delta = current_phase - states[i].last_phase;
+ if (phase_delta < 0)
+ phase_delta += DSSS_CORRELATION_LENGTH;
+ if (phase_delta == group_phase_tolerance + DSSS_DECIMATION) {
+ if (debug && !header_printed) {
+ header_printed = true;
+ DEBUG_PRINTN("windows %zu\n", ts);
+ }
+ if (debug) DEBUG_PRINTN(" %zd ", i);
+ /* Process window results */
+ assert(i < DSSS_MATCHER_CACHE_SIZE);
+ assert(0 <= states[i].data_pos && states[i].data_pos < TRANSMISSION_SYMBOLS);
+ states[i].data[ states[i].data_pos ] = states[i].candidate_data;
+ states[i].data_pos = states[i].data_pos + 1;
+ states[i].last_score = score_depreciation * states[i].last_score +
+ (1.0f - score_depreciation) * states[i].candidate_score;
+ if (debug) DEBUG_PRINTN("commit pos=%d val=%d score=%f ", states[i].data_pos, states[i].candidate_data, states[i].last_score);
+ states[i].candidate_score = 0.0f;
+ states[i].last_skips += states[i].candidate_skips;
+
+ if (states[i].last_skips > max_skips) {
+ if (debug) DEBUG_PRINTN("expire ");
+ states[i].last_phase = -1; /* invalidate entry */
+
+ } else if (states[i].data_pos == TRANSMISSION_SYMBOLS) {
+ if (debug) DEBUG_PRINTN("match ");
+ /* Frame received completely */
+ handle_dsss_received(states[i].data);
+ states[i].last_phase = -1; /* invalidate entry */
+ }
+ if (debug) DEBUG_PRINTN("\n");
+ }
+ }
+}
+
+static float gaussian(float a, float b, float c, float x) {
+ float n = x-b;
+ return a*expf(-n*n / (2.0f* c*c));
+}
+
+
+static float score_group(const struct group *g, int phase_delta) {
+ /* TODO make these constants configurable from Makefile */
+ const float distance_func_phase_tolerance = 10.0f;
+ return fabsf(g->max) * gaussian(1.0f, 0.0f, distance_func_phase_tolerance, phase_delta);
+}
+
+void group_received(struct dsss_demod_state *st) {
+ bool debug = false;
+ const int group_phase = st->group.max_ts % DSSS_CORRELATION_LENGTH;
+ /* This is the score of a decoding starting at this group (with no context) */
+ float base_score = score_group(&st->group, 0);
+
+ float min_score = INFINITY;
+ ssize_t min_idx = -1;
+ ssize_t empty_idx = -1;
+ for (size_t i=0; i<DSSS_MATCHER_CACHE_SIZE; i++) {
+
+ /* Search for empty entries */
+ if (st->matcher_cache[i].last_phase == -1) {
+ empty_idx = i;
+ continue;
+ }
+
+ /* Search for entries with matching phase */
+ /* This is the score of this group given the cached decoding at [i] */
+ int phase_delta = st->matcher_cache[i].last_phase - group_phase;
+ if (abs(phase_delta) <= group_phase_tolerance) {
+
+ float group_score = score_group(&st->group, phase_delta);
+ if (st->matcher_cache[i].candidate_score < group_score) {
+ assert(i < DSSS_MATCHER_CACHE_SIZE);
+ if (debug) DEBUG_PRINTN(" appending %zu %d score=%f pd=%d\n", i, decode_peak(st->group.max_ch, st->group.max), group_score, phase_delta);
+ /* Append to entry */
+ st->matcher_cache[i].candidate_score = group_score;
+ st->matcher_cache[i].candidate_phase = group_phase;
+ st->matcher_cache[i].candidate_data = decode_peak(st->group.max_ch, st->group.max);
+ st->matcher_cache[i].candidate_skips = 0;
+ }
+ }
+
+ /* Search for weakest entry */
+ /* TODO figure out this fitness function */
+ float score = st->matcher_cache[i].last_score * (1.5f + 0.1 * st->matcher_cache[i].data_pos);
+ if (debug) DEBUG_PRINTN(" score %zd %f %f %d", i, score, st->matcher_cache[i].last_score, st->matcher_cache[i].data_pos);
+ if (score < min_score) {
+ min_idx = i;
+ min_score = score;
+ }
+ }
+
+ /* If we found empty entries, replace one by a new decoding starting at this group */
+ if (empty_idx >= 0) {
+ if (debug) DEBUG_PRINTN(" empty %zd %d\n", empty_idx, decode_peak(st->group.max_ch, st->group.max));
+ assert(0 <= empty_idx && empty_idx < DSSS_MATCHER_CACHE_SIZE);
+ st->matcher_cache[empty_idx].last_phase = group_phase;
+ st->matcher_cache[empty_idx].candidate_score = base_score;
+ st->matcher_cache[empty_idx].last_score = base_score;
+ st->matcher_cache[empty_idx].candidate_phase = group_phase;
+ st->matcher_cache[empty_idx].candidate_data = decode_peak(st->group.max_ch, st->group.max);
+ st->matcher_cache[empty_idx].data_pos = 0;
+ st->matcher_cache[empty_idx].candidate_skips = 0;
+ st->matcher_cache[empty_idx].last_skips = 0;
+
+ /* If the weakest decoding in cache is weaker than a new decoding starting here, replace it */
+ } else if (min_score < base_score && min_idx >= 0) {
+ if (debug) DEBUG_PRINTN(" min %zd %d\n", min_idx, decode_peak(st->group.max_ch, st->group.max));
+ assert(0 <= min_idx && min_idx < DSSS_MATCHER_CACHE_SIZE);
+ st->matcher_cache[min_idx].last_phase = group_phase;
+ st->matcher_cache[min_idx].candidate_score = base_score;
+ st->matcher_cache[min_idx].last_score = base_score;
+ st->matcher_cache[min_idx].candidate_phase = group_phase;
+ st->matcher_cache[min_idx].candidate_data = decode_peak(st->group.max_ch, st->group.max);
+ st->matcher_cache[min_idx].data_pos = 0;
+ st->matcher_cache[min_idx].candidate_skips = 0;
+ st->matcher_cache[min_idx].last_skips = 0;
+ }
+}
+
+#if 0
+float run_iir(const float x, const int order, const struct iir_biquad q[order], struct iir_biquad_state st[order]) {
+ float intermediate = x;
+ for (int i=0; i<(order+1)/2; i++)
+ intermediate = run_biquad(intermediate, &q[i], &st[i]);
+ return intermediate;
+}
+
+float run_biquad(float x, const struct iir_biquad *const q, struct iir_biquad_state *const restrict st) {
+ /* direct form 2, see https://en.wikipedia.org/wiki/Digital_biquad_filter */
+ float intermediate = x + st->reg[0] * -q->a[0] + st->reg[1] * -q->a[1];
+ float out = intermediate * q->b[0] + st->reg[0] * q->b[1] + st->reg[1] * q->b[2];
+ st->reg[1] = st->reg[0];
+ st->reg[0] = intermediate;
+ return out;
+}
+#endif
+
+float cwt_convolve_step(const float v[DSSS_WAVELET_LUT_SIZE], size_t offx) {
+ float sum = 0.0f;
+ for (ssize_t j=0; j<DSSS_WAVELET_LUT_SIZE; j++) {
+ /* Our wavelet is symmetric so convolution and correlation are identical. Use correlation here for ease of
+ * implementation */
+ sum += v[(offx + j) % DSSS_WAVELET_LUT_SIZE] * dsss_cwt_wavelet_table[j];
+ //DEBUG_PRINT(" j=%d v=%f w=%f", j, v[(offx + j) % DSSS_WAVELET_LUT_SIZE], dsss_cwt_wavelet_table[j]);
+ }
+ return sum;
+}
+
+/* Compute last element of correlation for input [a] and hard-coded gold sequences.
+ *
+ * This is intened to be used once for each new incoming sample in [a]. It expects [a] to be of length
+ * [dsss_correlation_length] and produces the one sample where both the reference sequence and the input fully overlap.
+ * This is equivalent to "valid" mode in numpy's terminology[0].
+ *
+ * [0] https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html
+ */
+float gold_correlate_step(const size_t ncode, const float a[DSSS_CORRELATION_LENGTH], size_t offx, bool debug) {
+
+ float acc_outer = 0.0f;
+ uint8_t table_byte = 0;
+ if (debug) DEBUG_PRINTN("Correlate n=%zd: ", ncode);
+ for (size_t i=0; i<DSSS_GOLD_CODE_LENGTH; i++) {
+
+ if ((i&7) == 0) {
+ table_byte = dsss_gold_code_table[ncode][i>>3]; /* Fetch sequence table item */
+ if (debug) DEBUG_PRINTN("|");
+ }
+ int bv = table_byte & (0x80>>(i&7)); /* Extract bit */
+ bv = !!bv*2 - 1; /* Map 0, 1 -> -1, 1 */
+ if (debug) DEBUG_PRINTN("%s%d\033[0m", bv == 1 ? "\033[92m" : "\033[91m", (bv+1)/2);
+
+ float acc_inner = 0.0f;
+ for (size_t j=0; j<DSSS_DECIMATION; j++)
+ acc_inner += a[(offx + i*DSSS_DECIMATION + j) % DSSS_CORRELATION_LENGTH]; /* Multiply item */
+ //if (debug) DEBUG_PRINTN("%.2f ", acc_inner);
+ acc_outer += acc_inner * bv;
+ }
+ if (debug) DEBUG_PRINTN("\n");
+ return acc_outer / DSSS_CORRELATION_LENGTH;
+}