summaryrefslogtreecommitdiff
path: root/notebooks/signal_gen.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'notebooks/signal_gen.ipynb')
-rw-r--r--notebooks/signal_gen.ipynb298
1 files changed, 298 insertions, 0 deletions
diff --git a/notebooks/signal_gen.ipynb b/notebooks/signal_gen.ipynb
new file mode 100644
index 0000000..ea11ab0
--- /dev/null
+++ b/notebooks/signal_gen.ipynb
@@ -0,0 +1,298 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import struct\n",
+ "import random\n",
+ "import itertools\n",
+ "import datetime\n",
+ "import multiprocessing\n",
+ "from collections import defaultdict\n",
+ "import json\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "import matplotlib\n",
+ "import numpy as np\n",
+ "from scipy import signal as sig\n",
+ "from scipy import fftpack as fftpack\n",
+ "import ipywidgets\n",
+ "\n",
+ "import pydub\n",
+ "\n",
+ "from tqdm.notebook import tqdm\n",
+ "import colorednoise\n",
+ "\n",
+ "np.set_printoptions(linewidth=240)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib widget"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py\n",
+ "preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]],\n",
+ " 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], \n",
+ " 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]}\n",
+ "\n",
+ "def gen_gold(seq1, seq2):\n",
+ " gold = [seq1, seq2]\n",
+ " for shift in range(len(seq1)):\n",
+ " gold.append(seq1 ^ np.roll(seq2, -shift))\n",
+ " return gold\n",
+ "\n",
+ "def gold(n):\n",
+ " n = int(n)\n",
+ " if not n in preferred_pairs:\n",
+ " raise KeyError('preferred pairs for %s bits unknown' % str(n))\n",
+ " t0, t1 = preferred_pairs[n]\n",
+ " (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1)\n",
+ " return gen_gold(seq0, seq1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def modulate(data, nbits=5, pad=True):\n",
+ " # 0, 1 -> -1, 1\n",
+ " mask = np.array(gold(nbits))*2 - 1\n",
+ " \n",
+ " sel = mask[data>>1]\n",
+ " data_lsb_centered = ((data&1)*2 - 1)\n",
+ "\n",
+ " signal = (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2\n",
+ " if pad:\n",
+ " return np.hstack([ np.zeros(len(mask)), signal, np.zeros(len(mask)) ])\n",
+ " else:\n",
+ " return signal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_noisy_signal(\n",
+ " test_duration=32,\n",
+ " test_nbits=5,\n",
+ " test_decimation=10,\n",
+ " test_signal_amplitude=200e-3,\n",
+ " noise_level=10e-3):\n",
+ "\n",
+ " #test_data = np.random.RandomState(seed=0).randint(0, 2 * (2**test_nbits), test_duration)\n",
+ " #test_data = np.array([0, 1, 2, 3] * 50)\n",
+ " test_data = np.array(range(test_duration))\n",
+ " signal = np.repeat(modulate(test_data, test_nbits, pad=False) * 2.0 - 1, test_decimation) * test_signal_amplitude\n",
+ " noise = colorednoise.powerlaw_psd_gaussian(1, len(signal)*2) * noise_level\n",
+ " noise[-int(1.5*len(signal)):][:len(signal)] += signal\n",
+ "\n",
+ " return noise+50\n",
+ " #with open(f'mains_sim_signals/dsss_test_noisy_padded.bin', 'wb') as f:\n",
+ " # for e in noise:\n",
+ " # f.write(struct.pack('<f', e))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c778037402024206b195a27591dc0b40",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7f2ab8cabca0>]"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "ax.plot(generate_noisy_signal())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('data/ref_sig_audio_test3.bin', 'wb') as f:\n",
+ " for x in generate_noisy_signal():\n",
+ " f.write(struct.pack('f', x))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def synthesize_sine(freqs, freqs_sampling_rate=10.0, output_sampling_rate=44100):\n",
+ " duration = len(freqs) / freqs_sampling_rate # seconds\n",
+ " afreq_out = np.interp(np.linspace(0, duration, int(duration*output_sampling_rate)), np.linspace(0, duration, len(freqs)), freqs)\n",
+ " return np.sin(np.cumsum(2*np.pi * afreq_out / output_sampling_rate))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "test_sig = synthesize_sine(generate_noisy_signal())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "5171d9dbbe5048e2b32c3cf7f7d03744",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7f2a90476bb0>]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "ax.plot(test_sig[:44100])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def save_signal_flac(filename, signal, sampling_rate=44100):\n",
+ " signal -= np.min(signal)\n",
+ " signal /= np.max(signal)\n",
+ " signal -= 0.5\n",
+ " signal *= 2**16 - 1\n",
+ " le_bytes = signal.astype(np.int16).tobytes()\n",
+ " seg = pydub.AudioSegment(data=le_bytes, sample_width=2, frame_rate=sampling_rate, channels=1)\n",
+ " seg.export(filename, format='flac')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "save_signal_flac('synth_sig_test_0123_02.flac', synthesize_sine(generate_noisy_signal(), freqs_sampling_rate=10.0 * 100/128, output_sampling_rate=44100))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def emulate_adc_signal(adc_bits=12, adc_offset=0.4, adc_amplitude=0.25, freq_sampling_rate=10.0, output_sampling_rate=1000, **kwargs):\n",
+ " signal = synthesize_sine(generate_noisy_signal(), freq_sampling_rate, output_sampling_rate)\n",
+ " signal = signal*adc_amplitude + adc_offset\n",
+ " smin, smax = np.min(signal), np.max(signal)\n",
+ " if smin < 0.0 or smax > 1.0:\n",
+ " raise UserWarning('Amplitude or offset too large: Signal out of bounds with min/max [{smin}, {smax}] of ADC range')\n",
+ " signal *= 2**adc_bits -1\n",
+ " return signal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def save_adc_signal(fn, signal, dtype=np.uint16):\n",
+ " with open(fn, 'wb') as f:\n",
+ " f.write(signal.astype(dtype).tobytes())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "save_adc_signal('emulated_adc_readings_01.bin', emulate_adc_signal(freq_sampling_rate=10.0 * 100/128))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "labenv",
+ "language": "python",
+ "name": "labenv"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}