diff options
Diffstat (limited to 'notebooks/dsss_experiments.ipynb')
-rw-r--r-- | notebooks/dsss_experiments.ipynb | 448 |
1 files changed, 35 insertions, 413 deletions
diff --git a/notebooks/dsss_experiments.ipynb b/notebooks/dsss_experiments.ipynb index 8019081..c41ecc0 100644 --- a/notebooks/dsss_experiments.ipynb +++ b/notebooks/dsss_experiments.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -75,41 +75,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5081f9508a894fcf810e2d9c92c24a3e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n" - ] - }, - { - "data": { - "text/plain": [ - "<matplotlib.image.AxesImage at 0x7ff8d9616610>" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots()\n", "ax.matshow(gold(5))" @@ -117,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -133,35 +101,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n" - ] - }, - { - "data": { - "text/plain": [ - "array([-1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1,\n", - " 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1,\n", - " 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1,\n", - " 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1,\n", - " -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1,\n", - " 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1,\n", - " 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1,\n", - " -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1,\n", - " -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "data = np.array(list(range(16)))\n", "\n", @@ -178,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -192,52 +134,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n", - "(31,) (31,)\n", - "shapes (1240,) (1240,)\n", - "(31,) (31,)\n", - "mask (33, 310)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ec8de5680ba541938b7d1843b841c327", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n" - ] - }, - { - "data": { - "text/plain": [ - "<matplotlib.image.AxesImage at 0x7ff8d955afa0>" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "nbits = 5\n", "decimation = 10\n", @@ -260,42 +159,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bb32b5050ee14ddc8eb64697a8eb774b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n", - "(31,) (31,)\n" - ] - }, - { - "data": { - "text/plain": [ - "<matplotlib.image.AxesImage at 0x7ff8d8eb9e20>" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "decimation = 10\n", "\n", @@ -317,49 +183,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "48b3ae259e8046a5b90a82c4e80bab2e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(31,) (31,)\n", - "(31,) (31,)\n" - ] - }, - { - "data": { - "text/plain": [ - "(2.0, 1.0121324810255907)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "decimation = 10\n", "signal_amplitude = 2.0\n", @@ -399,19 +225,11 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mean: 49.98625\n" - ] - } - ], + "outputs": [], "source": [ - "with open('/mnt/c/Users/jaseg/shared/raw_freq.bin', 'rb') as f:\n", + "with open('data/raw_freq.bin', 'rb') as f:\n", " mains_noise = np.copy(np.frombuffer(f.read(), dtype='float32'))\n", " print('mean:', np.mean(mains_noise))\n", " mains_noise -= np.mean(mains_noise)" @@ -419,42 +237,9 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(63,) (63,)\n", - "(63,) (63,)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "73f4caf6a80f448183c41b711412a471", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.0020000000000000005, 0.014544699)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "decimation = 10\n", "signal_amplitude = 2.0e-3\n", @@ -534,41 +319,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9fa8fa6a6837412da95630c634a12e21", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(63,) (63,)\n" - ] - }, - { - "data": { - "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7ff8ad6f3b50>]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots()\n", "\n", @@ -584,42 +337,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "854dec05e45340ae91cf271b2facd7ed", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(63,) (63,)\n" - ] - }, - { - "ename": "NameError", - "evalue": "name 'cor2_pe' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-24-f158dfc14cca>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0msosh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'highpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msosl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lowpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mcor2_pe_flt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfiltfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'cor2_pe' is not defined" - ] - } - ], + "outputs": [], "source": [ "fig, axs = plt.subplots(3, 1, figsize=(9, 7), sharex=True)\n", "fig.tight_layout()\n", @@ -642,34 +362,9 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b3f68635d3ad4863b990c0b6e742840b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7ff8a9b7a820>]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots()\n", "nonlinear_distance = lambda x: 100**(2*np.abs(0.5-x%1)) / (np.abs(x)+3)**2\n", @@ -679,56 +374,9 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a6c4ef5b68a745b9963d3407df2e03fc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cor_an (65, 81269)\n", - "cwt_res (65, 81269)\n", - "th (65, 81269)\n", - "[((65,), (65,)), ((65,), (65,)), ((65,), (65,)), ((65,), (65,)), ((65,), (65,))]\n", - "peaks: 1852\n", - "avg_peak 1.6610203317347632\n", - "skipped 3 symbols at 42209.0\n", - "decoding [ref|dec]:\n", - " 10| 10 ✔ 69| 69 ✔ 124|124 ✔ 102|102 ✔ 2| 2 ✔ 3| 3 ✔ 78| 78 ✔ 29| 29 ✔ \n", - "122|123 ✘ 73| 73 ✔ 98| 98 ✔ 34| 34 ✔ -1| -1 ✔ 97| 97 ✔ 7| 7 ✔ 97| 97 ✔ \n", - " 86| 86 ✔ 120|120 ✔ 95| 95 ✔ 90| 90 ✔ 49| 49 ✔ 89| 89 ✔ 83| 83 ✔ 19| 19 ✔ \n", - " 84| 84 ✔ 117|117 ✔ 92| 92 ✔ 119|119 ✔ 16| 16 ✔ 45| 45 ✔ 23| 23 ✔ 16| 16 ✔ \n", - "111|111 ✔ 9| 9 ✔ 89| 89 ✔ 18| 18 ✔ 36| 36 ✔ 2| 2 ✔ 115|115 ✔ 40| 40 ✔ \n", - "100|100 ✔ 105|105 ✔ 93| 93 ✔ 85| 85 ✔ 107|107 ✔ 90| 90 ✔ 62| 62 ✔ 116|116 ✔ \n", - " 42| 42 ✔ 123|123 ✔ 40| 40 ✔ -1| -1 ✔ 77| 77 ✔ 40| 40 ✔ 57| 57 ✔ 110|110 ✔ \n", - " 29| 29 ✔ 94| 94 ✔ 1| 1 ✔ 29| 29 ✔ 71| 71 ✔ 119|119 ✔ 15| 15 ✔ 115|115 ✔ \n", - "120| -1 70| -1 50| 50 ✔ 71| 71 ✔ 50| 50 ✔ 61| 61 ✔ 38| 38 ✔ 4| 4 ✔ \n", - " 3| 3 ✔ 124|124 ✔ 95| 95 ✔ 27| 27 ✔ 48| 48 ✔ 116|116 ✔ 3| 3 ✔ 63| 63 ✔ \n", - " 19| 19 ✔ 79| 79 ✔ 2| 2 ✔ 43| 43 ✔ 92| 92 ✔ 8| 8 ✔ 65| 65 ✔ 35| 35 ✔ \n", - " 30| 30 ✔ 73| 73 ✔ 73| 73 ✔ 38| 38 ✔ 58| 58 ✔ 49| 49 ✔ 45| 45 ✔ 58| 58 ✔ \n", - " 46| 46 ✔ 116|116 ✔ 101|101 ✔ 5| 5 ✔ 78| 78 ✔ 126|126 ✔ 105| 76 ✘ 108|108 ✔ \n", - " 59| 59 ✔ 46| 46 ✔ 27| 27 ✔ 14| 14 ✔ 57| 57 ✔ 81| 81 ✔ 3| 3 ✔ 9| 9 ✔ \n", - "126|126 ✔ 18| 55 ✘ 76| 76 ✔ 101|101 ✔ 124|124 ✔ 4| 4 ✔ 3| 3 ✔ 102|102 ✔ \n", - " 79| 79 ✔ 121|121 ✔ 103|103 ✔ 92| 92 ✔ 30| 30 ✔ 4| 4 ✔ 103|103 ✔ 59| 58 ✘ \n", - "Symbol error rate e=0.046875\n", - "maximum bitrate r=321.6796875 b/h\n" - ] - } - ], + "outputs": [], "source": [ "threshold_factor = 4.0\n", "power_avg_width = 1024\n", @@ -880,35 +528,9 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "44d617eb7c5c416f96e16c9221c4fe96", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "NameError", - "evalue": "name 'cor2_pe_flt2' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-30-968181501cb1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0maxs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcor2_pe_flt2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0maxs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvolve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'full'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'cor2_pe_flt2' is not defined" - ] - } - ], + "outputs": [], "source": [ "fig, axs = plt.subplots(2, 1, figsize=(9, 7))\n", "fig.tight_layout()\n", @@ -924,9 +546,9 @@ ], "metadata": { "kernelspec": { - "display_name": "labenv", + "display_name": "ma-thesis-env", "language": "python", - "name": "labenv" + "name": "ma-thesis-env" }, "language_info": { "codemirror_mode": { @@ -938,7 +560,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.9.2" } }, "nbformat": 4, |