diff options
Diffstat (limited to 'lab-windows/scratch.ipynb')
-rw-r--r-- | lab-windows/scratch.ipynb | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/lab-windows/scratch.ipynb b/lab-windows/scratch.ipynb new file mode 100644 index 0000000..b35c76d --- /dev/null +++ b/lab-windows/scratch.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "712481c28d9d4e1d874a66d31c3e8bff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(0, 64)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "a = np.array([-00.000732, -00.000352, -00.000666, -00.000202, -00.000706, -00.000006, -00.000597, -00.002039, 000.050663, -00.644566, 004.456614, -16.817095, 034.654587, -39.021217, 024.007816, -08.070650, 001.478795, -00.150260, 000.006110, -00.002328, -00.002322, -00.002426, -00.002177, -00.002452, -00.002333, -00.002438, -00.002342, -00.002396, -00.001979, -00.003049, -00.001720, -00.002686, -00.002168, -00.002507, -00.001868, -00.002899, -00.002017, -00.001952, -00.003255, -00.001080, -00.003335, -00.001575, -00.002704, -00.001872, -00.002735, -00.001983, -00.002191, -00.002478, -00.002155, -00.002203, -00.002328, -00.002206, -00.002443, -00.001770, -00.002718, -00.002004, -00.002378, -00.002112, -00.002122, -00.002691, -00.001679, -00.002690, -00.001946, -00.002232])\n", + "b = np.array([-00.002734, -00.001325, -00.002220, -00.003693, -00.004907, -00.006454, -00.007737, 000.004823, -00.363143, 004.688968, -33.795303, 130.992630, -274.092651, 309.377991, -188.427826, 061.912941, -10.974002, 001.053608, -00.048927, 000.007710, 000.007010, 000.006493, 000.007234, 000.006725, 000.006938, 000.006694, 000.006356, 000.006173, 000.006333, 000.005684, 000.005697, 000.005575, 000.005101, 000.005693, 000.004319, 000.005344, 000.004673, 000.003566, 000.006213, 000.002719, 000.004850, 000.003755, 000.004243, 000.003419, 000.003960, 000.003498, 000.003297, 000.003877, 000.002836, 000.003487, 000.003144, 000.002824, 000.003355, 000.002528, 000.002975, 000.003012, 000.002137, 000.003112, 000.002416, 000.002512, 000.002084, 000.003008, 000.001837, 000.002351])\n", + "ax.plot([3.906250*i for i in range(len(a))], np.sqrt(a**2 + b**2))\n", + "a2 = ax.twiny()\n", + "a2.set_xlim([0, len(a)])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4024377df494eac935fd487026edc8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f2eb410f280>]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "d = [50.000839,50.000839,50.000832,50.000824,50.000839,50.000832,50.000839,50.000824,50.000847,50.000824,50.000824,50.000839,50.000832,50.000839,50.000824,50.000824,50.000839,50.000824,50.000824,50.000835,50.000816,50.000832,50.000847,50.000832,50.000835,50.000824,50.000824,50.000832,50.000832,50.000843,50.000824,50.000832,50.000832,50.000832,50.000828,50.000832,50.000832,50.000824,50.000816,50.000835,50.000843,50.000824,50.000824,50.000832,50.000832,50.000847,50.000824,50.000824,50.000824,50.000835,50.000835,50.000851,50.000824,50.000824,50.000832,50.000828,50.000828,50.000824,50.000832,50.000835,50.000835,50.000832,50.000847,50.000824,50.000832,50.000839,50.000839,50.000824,50.000832,50.000832,50.000832,50.000835,50.000816,50.000820,50.000824,50.000832,50.000824,50.000832,50.000835,50.000832,50.000816,50.000820,50.000839,50.000839,50.000824,50.000839,50.000820,50.000820,50.000839,50.000832,50.000835,50.000828,50.000824,50.000839,50.000839,50.000839,50.000816,50.000832,50.000824,50.000832,50.000832,50.000839,50.000824,50.000832,50.000828,50.000832,50.000828,50.000835,50.000832,50.000843,50.000839,50.000820,50.000832,50.000835,50.000824,50.000824,50.000828,50.000820,50.000820,50.000828,50.000832,50.000832,50.000828,50.000835,50.000839,50.000820,50.000832,50.000832,50.000824,50.000832,50.000832,50.000839,50.000839,50.000816,50.000828,50.000832,50.000839,50.000824,50.000824,50.000824,50.000835,50.000824,50.000832,50.000839,50.000835,50.000832,50.000828,50.000835,50.000828,50.000828,50.000824,50.000824,50.000839,50.000832,50.000824,50.000832,50.000832,50.000820,50.000851,50.000824,50.000824,50.000839,50.000824,50.000839,50.000832,50.000835,50.000820,50.000832,50.000839,50.000832,50.000832,50.000824,50.000832,50.000824,50.000832,50.000839,50.000839,50.000832,50.000816,50.000835,50.000854,50.000824,50.000816,50.000832,50.000832,50.000835,50.000816,50.000832,50.000824,50.000832,50.000832,50.000832,50.000824,50.000832,50.000824,50.000835,50.000832,50.000835,50.000832,50.000832,50.000828,50.000839,50.000824,50.000839,50.000824,50.000824,50.000839,50.000816,50.000839,50.000816,50.000832,50.000839,50.000839,50.000832,50.000824,50.000832,50.000820,50.000824,50.000835,50.000824,50.000835,50.000832,50.000824,50.000824,50.000820,50.000839,50.000816,50.000832,50.000832,50.000832,50.000824,50.000847,50.000824,50.000839]\n", + "\n", + "ax.plot(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "with open('impl_test_out.json') as f:\n", + " impl_measurements = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd23cf23221e4e14aaafdd58bb9416d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(len(impl_measurements), figsize=(8, 20), sharex=True)\n", + "fig.tight_layout()\n", + "axs = axs.flatten()\n", + "\n", + "for (label, data), ax in zip(impl_measurements.items(), axs):\n", + " ax.set_title(label)\n", + " ax.plot(data[1:-1])\n", + " mean = np.mean(data[1:-1])\n", + " rms = np.sqrt(np.mean(np.square(data[1:-1] - mean)))\n", + " ax.text(0.2, 0.2, f'mean={mean:.3}Hz, rms={rms*1e3:.3}mHz', ha='center', va='center', transform=ax.transAxes,\n", + " bbox=dict(boxstyle=\"square\", ec=(0,0,0,0), fc=(1,1,1,0.8)))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "labenv", + "language": "python", + "name": "labenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} |