diff options
Diffstat (limited to 'lab-windows/grid_scope.ipynb')
-rw-r--r-- | lab-windows/grid_scope.ipynb | 150 |
1 files changed, 25 insertions, 125 deletions
diff --git a/lab-windows/grid_scope.ipynb b/lab-windows/grid_scope.ipynb index 0cb2083..20b9fe8 100644 --- a/lab-windows/grid_scope.ipynb +++ b/lab-windows/grid_scope.ipynb @@ -132,13 +132,13 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38970a137bed494d8c28c270471c73df", + "model_id": "fa875d84971946ada24a959c1a85fe78", "version_major": 2, "version_minor": 0 }, @@ -207,21 +207,13 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 13, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-33-4419e570bd12>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n" - ] - }, - { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6faa0da0b6b64d0094b9b683e5f2c434", + "model_id": "2cf087d340f7461d88d2ebaba0c6f95e", "version_major": 2, "version_minor": 0 }, @@ -274,14 +266,14 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Window length: 405 sp, zero-padded to 405 sp\n" + "Window length: 202 sp, zero-padded to 202 sp\n" ] } ], @@ -289,7 +281,7 @@ "fs = sampling_rate # Hz\n", "ff = 50 # Hz\n", "\n", - "analysis_periods = 20\n", + "analysis_periods = 10\n", "window_len = fs * analysis_periods/ff\n", "nfft_factor = 1\n", "sigma = window_len/8 # samples\n", @@ -313,21 +305,13 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 15, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-64-467ca72791b1>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, ax = plt.subplots(figsize=(9, 3))\n" - ] - }, - { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95c94ad504b248febb55f81b0e919464", + "model_id": "432082c0f3a644d781669c57e8324ceb", "version_major": 2, "version_minor": 0 }, @@ -368,18 +352,18 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5443a7d157cc4a828cbffc91b2d645e3", + "model_id": "fd30a988dcb84bc0a29e74d3134167e6", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=2708.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=5443.0), HTML(value='')))" ] }, "metadata": {}, @@ -441,21 +425,13 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 17, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-56-4e12d8913585>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n" - ] - }, - { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c1c391d0577f4dbeb59db8d1fa9261de", + "model_id": "1baa6cf9948b4faeb79ad81940e2b4a0", "version_major": 2, "version_minor": 0 }, @@ -495,21 +471,13 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 18, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-57-8b77e38496af>:9: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n" - ] - }, - { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c1209b4895814c92a9b0fa01ad666667", + "model_id": "708dbcdd2292469398199a0f6054a09d", "version_major": 2, "version_minor": 0 }, @@ -527,7 +495,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-57-8b77e38496af>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;31m# Cut out first 10min of filtered data to give filters time to settle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0mrms_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiltered2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwhere\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf_t\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mrms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msquare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrms_slice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf'RMS (band-pass): {rms*1e3:.3f}mHz'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransAxes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'white'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'center'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-18-8b77e38496af>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;31m# Cut out first 10min of filtered data to give filters time to settle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0mrms_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiltered2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwhere\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf_t\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mrms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msquare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrms_slice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf'RMS (band-pass): {rms*1e3:.3f}mHz'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransAxes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'white'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'center'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mIndexError\u001b[0m: index 0 is out of bounds for axis 0 with size 0" ] } @@ -598,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -617,7 +585,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -643,39 +611,9 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-77-2f4bcf6b2d33>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, ax = plt.subplots(figsize=(6, 3))\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8b689c4f96fa40ffb5012764afb57564", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.\n" - ] - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots(figsize=(6, 3))\n", "fig.tight_layout()\n", @@ -699,32 +637,9 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<ipython-input-84-936ca777d145>:26: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " fig, ax = plt.subplots()\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b58b8858dea1485fae236c9fbb6954d5", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Number of samplepoints\n", "newcopy = np.copy(f_mean[1:-2])\n", @@ -768,24 +683,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "671ae919bf124e72b54144310ea1602d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fig, ax = plt.subplots()\n", "ax.plot(np.linspace(0, (len(f_mean)-3)/10, len(f_mean)-3) , f_mean[1:-2])\n", |