diff options
Diffstat (limited to 'gm_platform/fw/grid_scope.ipynb')
-rw-r--r-- | gm_platform/fw/grid_scope.ipynb | 3699 |
1 files changed, 0 insertions, 3699 deletions
diff --git a/gm_platform/fw/grid_scope.ipynb b/gm_platform/fw/grid_scope.ipynb deleted file mode 100644 index 1e5f942..0000000 --- a/gm_platform/fw/grid_scope.ipynb +++ /dev/null @@ -1,3699 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import sqlite3\n", - "import struct\n", - "import datetime\n", - "\n", - "import matplotlib\n", - "from matplotlib import pyplot as plt\n", - "from matplotlib import patches\n", - "import numpy as np\n", - "from scipy import signal, optimize\n", - "from tqdm.notebook import tnrange, tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib notebook" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "db = sqlite3.connect('waveform.sqlite3')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Run 000: 2020-01-30 14:24:25 - 2020-01-30 14:24:33 ( 0:00:07.571, 6880sp)\n", - "Run 001: 2020-01-30 14:24:56 - 2020-01-30 14:25:25 ( 0:00:28.305, 8992sp)\n", - "Run 002: 2020-01-30 14:25:33 - 2020-01-30 14:30:37 ( 0:05:04.016, 290112sp)\n", - "Run 003: 2020-01-30 14:31:31 - 2020-01-30 14:37:59 ( 0:06:27.900, 384192sp)\n", - "Run 004: 2020-01-30 14:38:30 - 2020-01-30 14:45:27 ( 0:06:56.604, 417216sp)\n", - "Run 005: 2020-01-30 15:18:50 - 2020-01-30 15:19:01 ( 0:00:10.690, 10240sp)\n", - "Run 006: 2020-01-30 16:37:15 - 2020-01-30 16:37:17 ( 0:00:02.527, 2560sp)\n", - "Run 007: 2020-01-30 16:44:23 - 2020-01-30 16:58:48 ( 0:14:24.293, 665600sp)\n", - "Run 008: 2020-01-30 17:06:35 - 2020-01-30 17:46:16 ( 0:39:41.608, 2163168sp)\n", - "Run 009: 2020-01-30 17:46:20 - 2020-01-30 18:11:16 ( 0:24:55.928, 1492480sp)\n", - "Run 010: 2020-01-30 18:11:39 - 2020-01-30 18:22:29 ( 0:10:50.025, 642560sp)\n", - "Run 011: 2020-01-30 18:22:32 - 2020-01-30 19:33:52 ( 1:11:20.495, 4280320sp)\n", - "Run 012: 2020-01-31 13:16:53 - 2020-01-31 13:18:12 ( 0:01:19.317, 79360sp)\n", - "Run 013: 2020-01-31 13:30:54 - 2020-01-31 13:31:35 ( 0:00:40.762, 40960sp)\n", - "Run 014: 2020-01-31 13:45:37 - 2020-01-31 13:45:42 ( 0:00:05.090, 5120sp)\n", - "Run 015: 2020-01-31 13:53:56 - 2020-01-31 13:54:01 ( 0:00:05.089, 5120sp)\n", - "Run 016: 2020-01-31 13:54:21 - 2020-01-31 13:54:26 ( 0:00:05.088, 5120sp)\n", - "Run 017: 2020-01-31 13:55:41 - 2020-01-31 13:55:46 ( 0:00:05.087, 5120sp)\n", - "Run 018: 2020-01-31 13:56:13 - 2020-01-31 13:56:19 ( 0:00:05.091, 5120sp)\n", - "Run 019: 2020-01-31 13:56:27 - 2020-01-31 13:56:30 ( 0:00:02.527, 2560sp)\n", - "Run 020: 2020-01-31 13:56:40 - 2020-01-31 13:56:48 ( 0:00:07.649, 7680sp)\n", - "Run 021: 2020-01-31 13:57:10 - 2020-01-31 13:58:34 ( 0:01:24.342, 84416sp)\n", - "Run 022: 2020-01-31 14:05:08 - 2020-01-31 14:05:24 ( 0:00:15.242, 15360sp)\n", - "Run 023: 2020-01-31 14:05:33 - 2020-01-31 14:12:50 ( 0:07:17.092, 435200sp)\n", - "Run 024: 2020-01-31 14:13:21 - 2020-01-31 14:15:39 ( 0:02:18.190, 138240sp)\n", - "Run 025: 2020-01-31 14:18:16 - 2020-01-31 18:58:25 ( 4:40:09.251, 16611840sp)\n" - ] - } - ], - "source": [ - "for run_id, start, end, count in db.execute('SELECT run_id, MIN(rx_ts), MAX(rx_ts), COUNT(*) FROM measurements GROUP BY run_id'):\n", - " foo = lambda x: datetime.datetime.fromtimestamp(x/1000)\n", - " start, end = foo(start), foo(end)\n", - " print(f'Run {run_id:03d}: {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S} ({str(end-start)[:-3]:>13}, {count*32:>9d}sp)')\n", - "last_run, n_records = run_id, count\n", - "sampling_rate = 1000.0" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "par = lambda *rs: 1/sum(1/r for r in rs) # resistor parallel calculation\n", - "\n", - "# FIXME: These are for the first prototype only!\n", - "vmeas_source_impedance = 330e3\n", - "vmeas_source_scale = 0.5\n", - "\n", - "vcc = 15.0\n", - "vmeas_div_high = 27e3\n", - "vmeas_div_low = par(4.7e3, 10e3)\n", - "vmeas_div_voltage = vcc * vmeas_div_low / (vmeas_div_high + vmeas_div_low)\n", - "vmeas_div_impedance = par(vmeas_div_high, vmeas_div_low)\n", - "\n", - "#vmeas_overall_factor = vmeas_div_impedance / (vmeas_source_impedance + vmeas_div_impedance)\n", - "v0 = 1.5746\n", - "v100 = 2.004\n", - "vn100 = 1.1452\n", - "\n", - "adc_vcc = 3.3 # V\n", - "adc_fullscale = 4095\n", - "\n", - "adc_val_to_voltage_factor = 1/adc_fullscale * adc_vcc\n", - "\n", - "adc_count_to_vmeas = lambda x: (x*adc_val_to_voltage_factor - v0) / (v100-v0) * 100" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "afc732c0ada8419e89a7ff2551212c00", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=0, max=519120), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "limit = n_records\n", - "record_size = 32\n", - "skip_dropped_sections = False\n", - "\n", - "data = np.zeros(limit*record_size)\n", - "data[:] = np.nan\n", - "\n", - "last_seq = None\n", - "write_index = 0\n", - "for i, (seq, chunk) in tqdm(enumerate(db.execute(\n", - " 'SELECT seq, data FROM measurements WHERE run_id = ? ORDER BY rx_ts LIMIT ? OFFSET ?',\n", - " (last_run, limit, n_records-limit))), total=n_records):\n", - " \n", - " if last_seq is None or seq == (last_seq + 1)%0xffff:\n", - " last_seq = seq\n", - " idx = write_index if skip_dropped_sections else i\n", - " data[idx*record_size:(idx+1)*record_size] = np.frombuffer(chunk, dtype='<H')\n", - " write_index += 1\n", - " \n", - " elif seq > last_seq:\n", - " last_seq = seq\n", - " # nans = np.empty((record_size,))\n", - " # nans[:] = np.nan\n", - " # data = np.append(data, nans) FIXME\n", - " \n", - "data = (data * adc_val_to_voltage_factor - v0) / (v100-v0) * 100" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "227.138252895397" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_not_nan = data[~np.isnan(data)]\n", - "np.sqrt(np.mean(np.square(data_not_nan)))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n", - "fig.tight_layout(pad=3, h_pad=0.1)\n", - "\n", - "range_start, range_len = -300, 60 # [s]\n", - "\n", - "data_slice = data[ int(range_start * sampling_rate) : int((range_start + range_len) * sampling_rate) ]\n", - "\n", - "top.grid()\n", - "top.plot(np.linspace(0, range_len, int(range_len*sampling_rate)), data_slice, lw=1.0)\n", - "top.set_xlim([range_len/2-0.25, range_len/2+0.25])\n", - "mean = np.mean(data_not_nan)\n", - "rms = np.sqrt(np.mean(np.square(data_not_nan - mean)))\n", - "peak = np.max(np.abs(data_not_nan - mean))\n", - "top.axhline(mean, color='red')\n", - "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", - "top.text(0, mean, f'mean: {mean:.3f}', color='white', bbox=bbox)\n", - "top.text(0.98, 0.2, f'V_RMS: {rms:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", - "top.text(0.98, 0.1, f'V_Pk: {peak:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", - "\n", - "bottom.grid()\n", - "bottom.specgram(data_slice, Fs=sampling_rate)\n", - "top.set_ylabel('U [V]')\n", - "bottom.set_ylabel('F [Hz]')\n", - "bottom.set_xlabel('t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "fs = sampling_rate # Hz\n", - "ff = 50 # Hz\n", - "\n", - "analysis_periods = 10\n", - "window_len = fs * analysis_periods/ff\n", - "nfft_factor = 4\n", - "sigma = window_len/8 # samples\n", - "\n", - "f, t, Zxx = signal.stft(data,\n", - " fs = fs,\n", - " window=('gaussian', sigma),\n", - " nperseg = window_len,\n", - " nfft = window_len * nfft_factor)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(9, 3))\n", - "fig.tight_layout(pad=2, h_pad=0.1)\n", - "\n", - "ax.pcolormesh(t[-200:-100], f[:250], np.abs(Zxx[:250,-200:-100]))\n", - "ax.set_title(f\"Run {last_run}\", pad=-20, color='white')\n", - "ax.grid()\n", - "ax.set_ylabel('f [Hz]')\n", - "ax.set_ylim([30, 75]) # Hz\n", - "ax.set_xlabel('simulation time t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "36ffcac30c8b4b378d3c422d3ef0698b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=0, max=166118), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "f_t = t\n", - "\n", - "n_f, n_t = Zxx.shape\n", - "# start, stop = 180, 220\n", - "# start, stop = 90, 110\n", - "# start, stop = 15, 35\n", - "# bounds_f = slice(start // 4 * nfft_factor, stop // 4 * nfft_factor)\n", - "f_min, f_max = 30, 70 # Hz\n", - "bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n", - "\n", - "\n", - "f_mean = np.zeros(Zxx.shape[1])\n", - "for le_t in tnrange(1, Zxx.shape[1] - 1):\n", - " frame_f = f[bounds_f]\n", - " frame_step = frame_f[1] - frame_f[0]\n", - " time_step = f_t[1] - f_t[0]\n", - " #if t == 10:\n", - " # axs[-1].plot(frame_f, frame_Z)\n", - " frame_Z = np.abs(Zxx[bounds_f, le_t])\n", - " # frame_f = f[180:220]\n", - " # frame_Z = np.abs(Zxx[180:220, 40])\n", - " # frame_f = f[15:35]\n", - " # frame_Z = np.abs(Zxx[15:35, 40])\n", - " # plt.plot(frame_f, frame_Z)\n", - "\n", - " # peak_f = frame_f[np.argmax(frame)]\n", - " # plt.axvline(peak_f, color='red')\n", - "\n", - "# def gauss(x, *p):\n", - "# A, mu, sigma, o = p\n", - "# return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + o\n", - "\n", - " def gauss(x, *p):\n", - " A, mu, sigma = p\n", - " return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n", - "\n", - " f_start = frame_f[np.argmax(frame_Z)]\n", - " A_start = np.max(frame_Z)\n", - " p0 = [A_start, f_start, 1.]\n", - " try:\n", - " coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n", - " # plt.plot(frame_f, gauss(frame_f, *coeff))\n", - " #print(coeff)\n", - " A, mu, sigma, *_ = coeff\n", - " f_mean[le_t] = mu\n", - " except Exception:\n", - " f_mean[le_t] = np.nan" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n", - "fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n", - "\n", - "label = f'Run {last_run}'\n", - "ax.plot(f_t[1:-1], f_mean[1:-1])\n", - "\n", - "# b, a = signal.butter(3,\n", - "# 1/5, # Hz\n", - "# btype='lowpass',\n", - "# fs=1/time_step)\n", - "# filtered = signal.lfilter(b, a, f_mean[1:-1], axis=0)\n", - "# ax.plot(f_t[1:-1], filtered)\n", - "\n", - "ax.set_title(label, pad=-20)\n", - "ax.set_ylabel('f [Hz]')\n", - "ax.grid()\n", - "if not label in ['off_frequency', 'sweep_phase_steps']:\n", - " ax.set_ylim([49.90, 50.10])\n", - " var = np.var(f_mean[~np.isnan(f_mean)][1:-1])\n", - " ax.text(0.5, 0.08, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", - " ax.text(0.5, 0.15, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", - "\n", - "# ax.text(0.5, 0.2, f'filt. σ²={np.var(filtered) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n", - "else:\n", - " f_min, f_max = min(f_mean[1:-1]), max(f_mean[1:-1])\n", - " delta = f_max - f_min\n", - " ax.set_ylim(f_min - delta * 0.1, f_max + delta * 0.3)\n", - "\n", - "for i in np.where(np.isnan(f_mean))[0]:\n", - " ax.axvspan(f_t[i], f_t[i+1], color='lightblue')\n", - "\n", - "ax.set_xlabel('recording time t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "f_copy = np.copy(f_mean[1:-1])\n", - "f_copy[np.isnan(f_copy)] = np.mean(f_copy[~np.isnan(f_copy)])\n", - "b, a = signal.cheby2(7, 86, 100, 'low', output='ba', fs=1000)\n", - "filtered = signal.lfilter(b, a, f_copy)\n", - "\n", - "b2, a2 = signal.cheby2(3, 30, 1, 'high', output='ba', fs=1000)\n", - "filtered2 = signal.lfilter(b2, a2, filtered)\n", - "\n", - "fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n", - "ax1.plot(f_t[1:-1], f_copy, color='lightgray')\n", - "ax1.set_ylim([49.90, 50.10])\n", - "ax1.grid()\n", - "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", - "ax1.xaxis.set_major_formatter(formatter)\n", - "zoom_offx = 7000 # s\n", - "zoom_len = 300 # s\n", - "ax1.set_xlim([zoom_offx, zoom_offx + zoom_len])\n", - "\n", - "ax1.plot(f_t[1:-1], filtered, color='orange')\n", - "ax1r = ax1.twinx()\n", - "ax1r.plot(f_t[1:-1], filtered2, color='red')\n", - "ax1r.set_ylim([-0.015, 0.015])\n", - "ax1.set_title(f'Zoomed trace ({datetime.timedelta(seconds=zoom_len)})', pad=-20)\n", - "\n", - "\n", - "ax2.set_title(f'Run {last_run}')\n", - "ax2.plot(f_t[1:-1], f_copy, color='orange')\n", - "\n", - "ax2r = ax2.twinx()\n", - "ax2r.set_ylim([-0.1, 0.1])\n", - "ax2r.plot(f_t[1:-1], filtered2, color='red')\n", - "#ax2.plot(f_t[1:-1], filtered, color='orange', zorder=1)\n", - "ax2.set_ylim([49.90, 50.10])\n", - "ax2.set_xlim([0, f_t[-2]])\n", - "ax2.grid()\n", - "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", - "ax2.xaxis.set_major_formatter(formatter)\n", - "\n", - "ax2.legend(handles=[\n", - " patches.Patch(color='lightgray', label='Raw frequency'),\n", - " patches.Patch(color='orange', label='low-pass filtered'),\n", - " patches.Patch(color='red', label='band-pass filtered')])\n", - "\n", - "#ax2r.spines['right'].set_color('red')\n", - "ax2r.yaxis.label.set_color('red')\n", - "#ax2r.tick_params(axis='y', colors='red')\n", - "\n", - "#ax1r.spines['right'].set_color('red')\n", - "ax1r.yaxis.label.set_color('red')\n", - "#ax1r.tick_params(axis='y', colors='red')\n", - "\n", - "ax1.set_ylabel('f [Hz]')\n", - "ax1r.set_ylabel('band-pass Δf [Hz]')\n", - "ax2.set_ylabel('f [Hz]')\n", - "ax2r.set_ylabel('band-pass Δf [Hz]')\n", - "\n", - "# Cut out first 10min of filtered data to give filters time to settle\n", - "rms_slice = filtered2[np.where(f_t[1:] > 10*60)[0][0]:]\n", - "rms = np.sqrt(np.mean(np.square(rms_slice)))\n", - "ax1.text(0.5, 0.1, f'RMS (band-pass): {rms*1e3:.3f}mHz', transform=ax1.transAxes, color='white', bbox=bbox, ha='center')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "chunk_size = 256\n", - "\n", - "with open('filtered_freq.bin', 'wb') as f:\n", - " for chunk in range(0, len(rms_slice), chunk_size):\n", - " out_data = rms_slice[chunk:chunk+chunk_size]\n", - " f.write(struct.pack(f'{len(out_data)}f', *out_data))\n", - " \n", - "with open('raw_freq.bin', 'wb') as f:\n", - " for chunk in range(0, len(f_copy), chunk_size):\n", - " out_data = f_copy[chunk:chunk+chunk_size]\n", - " f.write(struct.pack(f'{len(out_data)}f', *out_data))" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(160118,)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def modulate(sequences, data)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} |