diff options
Diffstat (limited to 'controller/fw/test_pyldpc_utils.py')
-rw-r--r-- | controller/fw/test_pyldpc_utils.py | 182 |
1 files changed, 182 insertions, 0 deletions
diff --git a/controller/fw/test_pyldpc_utils.py b/controller/fw/test_pyldpc_utils.py new file mode 100644 index 0000000..6b14532 --- /dev/null +++ b/controller/fw/test_pyldpc_utils.py @@ -0,0 +1,182 @@ +"""Conversion tools.""" +import math +import numbers +import numpy as np +import scipy +from scipy.stats import norm +pi = math.pi + + +def int2bitarray(n, k): + """Change an array's base from int (base 10) to binary (base 2).""" + binary_string = bin(n) + length = len(binary_string) + bitarray = np.zeros(k, 'int') + for i in range(length - 2): + bitarray[k - i - 1] = int(binary_string[length - i - 1]) + + return bitarray + + +def bitarray2int(bitarray): + """Change array's base from binary (base 2) to int (base 10).""" + bitstring = "".join([str(i) for i in bitarray]) + + return int(bitstring, 2) + + +def binaryproduct(X, Y): + """Compute a matrix-matrix / vector product in Z/2Z.""" + A = X.dot(Y) + try: + A = A.toarray() + except AttributeError: + pass + return A % 2 + + +def gaussjordan(X, change=0): + """Compute the binary row reduced echelon form of X. + + Parameters + ---------- + X: array (m, n) + change : boolean (default, False). If True returns the inverse transform + + Returns + ------- + if `change` == 'True': + A: array (m, n). row reduced form of X. + P: tranformations applied to the identity + else: + A: array (m, n). row reduced form of X. + + """ + A = np.copy(X) + m, n = A.shape + + if change: + P = np.identity(m).astype(int) + + pivot_old = -1 + for j in range(n): + filtre_down = A[pivot_old+1:m, j] + pivot = np.argmax(filtre_down)+pivot_old+1 + + if A[pivot, j]: + pivot_old += 1 + if pivot_old != pivot: + aux = np.copy(A[pivot, :]) + A[pivot, :] = A[pivot_old, :] + A[pivot_old, :] = aux + if change: + aux = np.copy(P[pivot, :]) + P[pivot, :] = P[pivot_old, :] + P[pivot_old, :] = aux + + for i in range(m): + if i != pivot_old and A[i, j]: + if change: + P[i, :] = abs(P[i, :]-P[pivot_old, :]) + A[i, :] = abs(A[i, :]-A[pivot_old, :]) + + if pivot_old == m-1: + break + + if change: + return A, P + return A + + +def binaryrank(X): + """Compute rank of a binary Matrix using Gauss-Jordan algorithm.""" + A = np.copy(X) + m, n = A.shape + + A = gaussjordan(A) + + return sum([a.any() for a in A]) + + +def f1(y, sigma): + """Compute normal density N(1,sigma).""" + f = norm.pdf(y, loc=1, scale=sigma) + return f + + +def fm1(y, sigma): + """Compute normal density N(-1,sigma).""" + + f = norm.pdf(y, loc=-1, scale=sigma) + return f + + +def bitsandnodes(H): + """Return bits and nodes of a parity-check matrix H.""" + if type(H) != scipy.sparse.csr_matrix: + bits_indices, bits = np.where(H) + nodes_indices, nodes = np.where(H.T) + else: + bits_indices, bits = scipy.sparse.find(H)[:2] + nodes_indices, nodes = scipy.sparse.find(H.T)[:2] + bits_histogram = np.bincount(bits_indices) + nodes_histogram = np.bincount(nodes_indices) + + return bits_histogram, bits, nodes_histogram, nodes + + +def incode(H, x): + """Compute Binary Product of H and x.""" + return (binaryproduct(H, x) == 0).all() + + +def gausselimination(A, b): + """Solve linear system in Z/2Z via Gauss Gauss elimination.""" + if type(A) == scipy.sparse.csr_matrix: + A = A.toarray().copy() + else: + A = A.copy() + b = b.copy() + n, k = A.shape + + for j in range(min(k, n)): + listedepivots = [i for i in range(j, n) if A[i, j]] + if len(listedepivots): + pivot = np.min(listedepivots) + else: + continue + if pivot != j: + aux = (A[j, :]).copy() + A[j, :] = A[pivot, :] + A[pivot, :] = aux + + aux = b[j].copy() + b[j] = b[pivot] + b[pivot] = aux + + for i in range(j+1, n): + if A[i, j]: + A[i, :] = abs(A[i, :]-A[j, :]) + b[i] = abs(b[i]-b[j]) + + return A, b + + +def check_random_state(seed): + """Turn seed into a np.random.RandomState instance + Parameters + ---------- + seed : None | int | instance of RandomState + If seed is None, return the RandomState singleton used by np.random. + If seed is an int, return a new RandomState instance seeded with seed. + If seed is already a RandomState instance, return it. + Otherwise raise ValueError. + """ + if seed is None or seed is np.random: + return np.random.mtrand._rand + if isinstance(seed, numbers.Integral): + return np.random.RandomState(seed) + if isinstance(seed, np.random.RandomState): + return seed + raise ValueError('%r cannot be used to seed a numpy.random.RandomState' + ' instance' % seed) |