diff options
Diffstat (limited to 'controller/fw/test_decoder.py')
-rw-r--r-- | controller/fw/test_decoder.py | 168 |
1 files changed, 0 insertions, 168 deletions
diff --git a/controller/fw/test_decoder.py b/controller/fw/test_decoder.py deleted file mode 100644 index 8be5b02..0000000 --- a/controller/fw/test_decoder.py +++ /dev/null @@ -1,168 +0,0 @@ -"""Decoding module.""" -import numpy as np -import warnings -import test_pyldpc_utils as utils - -from numba import njit, int64, types, float64 - -np.set_printoptions(linewidth=180, threshold=1000, edgeitems=20) - -def decode(H, y, snr, maxiter=100): - """Decode a Gaussian noise corrupted n bits message using BP algorithm. - - Decoding is performed in parallel if multiple codewords are passed in y. - - Parameters - ---------- - H: array (n_equations, n_code). Decoding matrix H. - y: array (n_code, n_messages) or (n_code,). Received message(s) in the - codeword space. - maxiter: int. Maximum number of iterations of the BP algorithm. - - Returns - ------- - x: array (n_code,) or (n_code, n_messages) the solutions in the - codeword space. - - """ - m, n = H.shape - - bits_hist, bits_values, nodes_hist, nodes_values = utils.bitsandnodes(H) - - var = 10 ** (-snr / 10) - - if y.ndim == 1: - y = y[:, None] - # step 0: initialization - - Lc = 2 * y / var - _, n_messages = y.shape - - Lq = np.zeros(shape=(m, n, n_messages)) - - Lr = np.zeros(shape=(m, n, n_messages)) - - for n_iter in range(maxiter): - #print(f'============================ iteration {n_iter} ============================') - Lq, Lr, L_posteriori = _logbp_numba(bits_hist, bits_values, nodes_hist, - nodes_values, Lc, Lq, Lr, n_iter) - #print("Lq=", Lq.flatten()) - #print("Lr=", Lr.flatten()) - #print("L_posteriori=", L_posteriori.flatten()) - #print('L_posteriori=[') - #for row in L_posteriori.reshape([-1, 16]): - # for val in row: - # cc = '\033[91m' if val < 0 else ('\033[92m' if val > 0 else '\033[94m') - # print(f"{cc}{val: 012.6g}\033[38;5;240m", end=', ') - # print() - x = np.array(L_posteriori <= 0).astype(int) - - product = utils.incode(H, x) - - if product: - print(f'found, n_iter={n_iter}') - break - - if n_iter == maxiter - 1: - warnings.warn("""Decoding stopped before convergence. You may want - to increase maxiter""") - return x.squeeze() - - -output_type_log2 = types.Tuple((float64[:, :, :], float64[:, :, :], - float64[:, :])) - - -#@njit(output_type_log2(int64[:], int64[:], int64[:], int64[:], float64[:, :], -# float64[:, :, :], float64[:, :, :], int64), cache=True) -def _logbp_numba(bits_hist, bits_values, nodes_hist, nodes_values, Lc, Lq, Lr, - n_iter): - """Perform inner ext LogBP solver.""" - m, n, n_messages = Lr.shape - # step 1 : Horizontal - - bits_counter = 0 - nodes_counter = 0 - for i in range(m): - #print(f'=== i={i}') - ff = bits_hist[i] - ni = bits_values[bits_counter: bits_counter + ff] - bits_counter += ff - for j_iter, j in enumerate(ni): - nij = ni[:] - #print(f'\033[38;5;240mj={j:04d}', end=' ') - - X = np.ones(n_messages) - if n_iter == 0: - for kk in range(len(nij)): - if nij[kk] != j: - lcv = Lc[nij[kk],0] - lcc = '\033[91m' if lcv < 0 else ('\033[92m' if lcv > 0 else '\033[94m') - #print(f'nij={nij[kk]:04d} Lc={lcc}{lcv:> 8f}\033[38;5;240m', end=' ') - X *= np.tanh(0.5 * Lc[nij[kk]]) - else: - for kk in range(len(nij)): - if nij[kk] != j: - X *= np.tanh(0.5 * Lq[i, nij[kk]]) - #print(f'\n==== {i:03d} {j_iter:01d} {X[0]:> 8f}') - num = 1 + X - denom = 1 - X - for ll in range(n_messages): - if num[ll] == 0: - Lr[i, j, ll] = -1 - elif denom[ll] == 0: - Lr[i, j, ll] = 1 - else: - Lr[i, j, ll] = np.log(num[ll] / denom[ll]) - # step 2 : Vertical - - for j in range(n): - ff = nodes_hist[j] - mj = nodes_values[bits_counter: nodes_counter + ff] - nodes_counter += ff - for i in mj: - mji = mj[:] - Lq[i, j] = Lc[j] - - for kk in range(len(mji)): - if mji[kk] != i: - Lq[i, j] += Lr[mji[kk], j] - - # LLR a posteriori: - L_posteriori = np.zeros((n, n_messages)) - nodes_counter = 0 - for j in range(n): - ff = nodes_hist[j] - mj = nodes_values[bits_counter: nodes_counter + ff] - nodes_counter += ff - L_posteriori[j] = Lc[j] + Lr[mj, j].sum(axis=0) - - return Lq, Lr, L_posteriori - - -def get_message(tG, x): - """Compute the original `n_bits` message from a `n_code` codeword `x`. - - Parameters - ---------- - tG: array (n_code, n_bits) coding matrix tG. - x: array (n_code,) decoded codeword of length `n_code`. - - Returns - ------- - message: array (n_bits,). Original binary message. - - """ - n, k = tG.shape - - rtG, rx = utils.gausselimination(tG, x) - - message = np.zeros(k).astype(int) - - message[k - 1] = rx[k - 1] - for i in reversed(range(k - 1)): - message[i] = rx[i] - message[i] -= utils.binaryproduct(rtG[i, list(range(i+1, k))], - message[list(range(i+1, k))]) - - return abs(message) |