summaryrefslogtreecommitdiff
path: root/controller/fw/test_decoder.py
diff options
context:
space:
mode:
Diffstat (limited to 'controller/fw/test_decoder.py')
-rw-r--r--controller/fw/test_decoder.py168
1 files changed, 0 insertions, 168 deletions
diff --git a/controller/fw/test_decoder.py b/controller/fw/test_decoder.py
deleted file mode 100644
index 8be5b02..0000000
--- a/controller/fw/test_decoder.py
+++ /dev/null
@@ -1,168 +0,0 @@
-"""Decoding module."""
-import numpy as np
-import warnings
-import test_pyldpc_utils as utils
-
-from numba import njit, int64, types, float64
-
-np.set_printoptions(linewidth=180, threshold=1000, edgeitems=20)
-
-def decode(H, y, snr, maxiter=100):
- """Decode a Gaussian noise corrupted n bits message using BP algorithm.
-
- Decoding is performed in parallel if multiple codewords are passed in y.
-
- Parameters
- ----------
- H: array (n_equations, n_code). Decoding matrix H.
- y: array (n_code, n_messages) or (n_code,). Received message(s) in the
- codeword space.
- maxiter: int. Maximum number of iterations of the BP algorithm.
-
- Returns
- -------
- x: array (n_code,) or (n_code, n_messages) the solutions in the
- codeword space.
-
- """
- m, n = H.shape
-
- bits_hist, bits_values, nodes_hist, nodes_values = utils.bitsandnodes(H)
-
- var = 10 ** (-snr / 10)
-
- if y.ndim == 1:
- y = y[:, None]
- # step 0: initialization
-
- Lc = 2 * y / var
- _, n_messages = y.shape
-
- Lq = np.zeros(shape=(m, n, n_messages))
-
- Lr = np.zeros(shape=(m, n, n_messages))
-
- for n_iter in range(maxiter):
- #print(f'============================ iteration {n_iter} ============================')
- Lq, Lr, L_posteriori = _logbp_numba(bits_hist, bits_values, nodes_hist,
- nodes_values, Lc, Lq, Lr, n_iter)
- #print("Lq=", Lq.flatten())
- #print("Lr=", Lr.flatten())
- #print("L_posteriori=", L_posteriori.flatten())
- #print('L_posteriori=[')
- #for row in L_posteriori.reshape([-1, 16]):
- # for val in row:
- # cc = '\033[91m' if val < 0 else ('\033[92m' if val > 0 else '\033[94m')
- # print(f"{cc}{val: 012.6g}\033[38;5;240m", end=', ')
- # print()
- x = np.array(L_posteriori <= 0).astype(int)
-
- product = utils.incode(H, x)
-
- if product:
- print(f'found, n_iter={n_iter}')
- break
-
- if n_iter == maxiter - 1:
- warnings.warn("""Decoding stopped before convergence. You may want
- to increase maxiter""")
- return x.squeeze()
-
-
-output_type_log2 = types.Tuple((float64[:, :, :], float64[:, :, :],
- float64[:, :]))
-
-
-#@njit(output_type_log2(int64[:], int64[:], int64[:], int64[:], float64[:, :],
-# float64[:, :, :], float64[:, :, :], int64), cache=True)
-def _logbp_numba(bits_hist, bits_values, nodes_hist, nodes_values, Lc, Lq, Lr,
- n_iter):
- """Perform inner ext LogBP solver."""
- m, n, n_messages = Lr.shape
- # step 1 : Horizontal
-
- bits_counter = 0
- nodes_counter = 0
- for i in range(m):
- #print(f'=== i={i}')
- ff = bits_hist[i]
- ni = bits_values[bits_counter: bits_counter + ff]
- bits_counter += ff
- for j_iter, j in enumerate(ni):
- nij = ni[:]
- #print(f'\033[38;5;240mj={j:04d}', end=' ')
-
- X = np.ones(n_messages)
- if n_iter == 0:
- for kk in range(len(nij)):
- if nij[kk] != j:
- lcv = Lc[nij[kk],0]
- lcc = '\033[91m' if lcv < 0 else ('\033[92m' if lcv > 0 else '\033[94m')
- #print(f'nij={nij[kk]:04d} Lc={lcc}{lcv:> 8f}\033[38;5;240m', end=' ')
- X *= np.tanh(0.5 * Lc[nij[kk]])
- else:
- for kk in range(len(nij)):
- if nij[kk] != j:
- X *= np.tanh(0.5 * Lq[i, nij[kk]])
- #print(f'\n==== {i:03d} {j_iter:01d} {X[0]:> 8f}')
- num = 1 + X
- denom = 1 - X
- for ll in range(n_messages):
- if num[ll] == 0:
- Lr[i, j, ll] = -1
- elif denom[ll] == 0:
- Lr[i, j, ll] = 1
- else:
- Lr[i, j, ll] = np.log(num[ll] / denom[ll])
- # step 2 : Vertical
-
- for j in range(n):
- ff = nodes_hist[j]
- mj = nodes_values[bits_counter: nodes_counter + ff]
- nodes_counter += ff
- for i in mj:
- mji = mj[:]
- Lq[i, j] = Lc[j]
-
- for kk in range(len(mji)):
- if mji[kk] != i:
- Lq[i, j] += Lr[mji[kk], j]
-
- # LLR a posteriori:
- L_posteriori = np.zeros((n, n_messages))
- nodes_counter = 0
- for j in range(n):
- ff = nodes_hist[j]
- mj = nodes_values[bits_counter: nodes_counter + ff]
- nodes_counter += ff
- L_posteriori[j] = Lc[j] + Lr[mj, j].sum(axis=0)
-
- return Lq, Lr, L_posteriori
-
-
-def get_message(tG, x):
- """Compute the original `n_bits` message from a `n_code` codeword `x`.
-
- Parameters
- ----------
- tG: array (n_code, n_bits) coding matrix tG.
- x: array (n_code,) decoded codeword of length `n_code`.
-
- Returns
- -------
- message: array (n_bits,). Original binary message.
-
- """
- n, k = tG.shape
-
- rtG, rx = utils.gausselimination(tG, x)
-
- message = np.zeros(k).astype(int)
-
- message[k - 1] = rx[k - 1]
- for i in reversed(range(k - 1)):
- message[i] = rx[i]
- message[i] -= utils.binaryproduct(rtG[i, list(range(i+1, k))],
- message[list(range(i+1, k))])
-
- return abs(message)