diff options
Diffstat (limited to 'controller/fw/src/test_decoder.py')
-rw-r--r-- | controller/fw/src/test_decoder.py | 168 |
1 files changed, 168 insertions, 0 deletions
diff --git a/controller/fw/src/test_decoder.py b/controller/fw/src/test_decoder.py new file mode 100644 index 0000000..8be5b02 --- /dev/null +++ b/controller/fw/src/test_decoder.py @@ -0,0 +1,168 @@ +"""Decoding module.""" +import numpy as np +import warnings +import test_pyldpc_utils as utils + +from numba import njit, int64, types, float64 + +np.set_printoptions(linewidth=180, threshold=1000, edgeitems=20) + +def decode(H, y, snr, maxiter=100): + """Decode a Gaussian noise corrupted n bits message using BP algorithm. + + Decoding is performed in parallel if multiple codewords are passed in y. + + Parameters + ---------- + H: array (n_equations, n_code). Decoding matrix H. + y: array (n_code, n_messages) or (n_code,). Received message(s) in the + codeword space. + maxiter: int. Maximum number of iterations of the BP algorithm. + + Returns + ------- + x: array (n_code,) or (n_code, n_messages) the solutions in the + codeword space. + + """ + m, n = H.shape + + bits_hist, bits_values, nodes_hist, nodes_values = utils.bitsandnodes(H) + + var = 10 ** (-snr / 10) + + if y.ndim == 1: + y = y[:, None] + # step 0: initialization + + Lc = 2 * y / var + _, n_messages = y.shape + + Lq = np.zeros(shape=(m, n, n_messages)) + + Lr = np.zeros(shape=(m, n, n_messages)) + + for n_iter in range(maxiter): + #print(f'============================ iteration {n_iter} ============================') + Lq, Lr, L_posteriori = _logbp_numba(bits_hist, bits_values, nodes_hist, + nodes_values, Lc, Lq, Lr, n_iter) + #print("Lq=", Lq.flatten()) + #print("Lr=", Lr.flatten()) + #print("L_posteriori=", L_posteriori.flatten()) + #print('L_posteriori=[') + #for row in L_posteriori.reshape([-1, 16]): + # for val in row: + # cc = '\033[91m' if val < 0 else ('\033[92m' if val > 0 else '\033[94m') + # print(f"{cc}{val: 012.6g}\033[38;5;240m", end=', ') + # print() + x = np.array(L_posteriori <= 0).astype(int) + + product = utils.incode(H, x) + + if product: + print(f'found, n_iter={n_iter}') + break + + if n_iter == maxiter - 1: + warnings.warn("""Decoding stopped before convergence. You may want + to increase maxiter""") + return x.squeeze() + + +output_type_log2 = types.Tuple((float64[:, :, :], float64[:, :, :], + float64[:, :])) + + +#@njit(output_type_log2(int64[:], int64[:], int64[:], int64[:], float64[:, :], +# float64[:, :, :], float64[:, :, :], int64), cache=True) +def _logbp_numba(bits_hist, bits_values, nodes_hist, nodes_values, Lc, Lq, Lr, + n_iter): + """Perform inner ext LogBP solver.""" + m, n, n_messages = Lr.shape + # step 1 : Horizontal + + bits_counter = 0 + nodes_counter = 0 + for i in range(m): + #print(f'=== i={i}') + ff = bits_hist[i] + ni = bits_values[bits_counter: bits_counter + ff] + bits_counter += ff + for j_iter, j in enumerate(ni): + nij = ni[:] + #print(f'\033[38;5;240mj={j:04d}', end=' ') + + X = np.ones(n_messages) + if n_iter == 0: + for kk in range(len(nij)): + if nij[kk] != j: + lcv = Lc[nij[kk],0] + lcc = '\033[91m' if lcv < 0 else ('\033[92m' if lcv > 0 else '\033[94m') + #print(f'nij={nij[kk]:04d} Lc={lcc}{lcv:> 8f}\033[38;5;240m', end=' ') + X *= np.tanh(0.5 * Lc[nij[kk]]) + else: + for kk in range(len(nij)): + if nij[kk] != j: + X *= np.tanh(0.5 * Lq[i, nij[kk]]) + #print(f'\n==== {i:03d} {j_iter:01d} {X[0]:> 8f}') + num = 1 + X + denom = 1 - X + for ll in range(n_messages): + if num[ll] == 0: + Lr[i, j, ll] = -1 + elif denom[ll] == 0: + Lr[i, j, ll] = 1 + else: + Lr[i, j, ll] = np.log(num[ll] / denom[ll]) + # step 2 : Vertical + + for j in range(n): + ff = nodes_hist[j] + mj = nodes_values[bits_counter: nodes_counter + ff] + nodes_counter += ff + for i in mj: + mji = mj[:] + Lq[i, j] = Lc[j] + + for kk in range(len(mji)): + if mji[kk] != i: + Lq[i, j] += Lr[mji[kk], j] + + # LLR a posteriori: + L_posteriori = np.zeros((n, n_messages)) + nodes_counter = 0 + for j in range(n): + ff = nodes_hist[j] + mj = nodes_values[bits_counter: nodes_counter + ff] + nodes_counter += ff + L_posteriori[j] = Lc[j] + Lr[mj, j].sum(axis=0) + + return Lq, Lr, L_posteriori + + +def get_message(tG, x): + """Compute the original `n_bits` message from a `n_code` codeword `x`. + + Parameters + ---------- + tG: array (n_code, n_bits) coding matrix tG. + x: array (n_code,) decoded codeword of length `n_code`. + + Returns + ------- + message: array (n_bits,). Original binary message. + + """ + n, k = tG.shape + + rtG, rx = utils.gausselimination(tG, x) + + message = np.zeros(k).astype(int) + + message[k - 1] = rx[k - 1] + for i in reversed(range(k - 1)): + message[i] = rx[i] + message[i] -= utils.binaryproduct(rtG[i, list(range(i+1, k))], + message[list(range(i+1, k))]) + + return abs(message) |