diff options
Diffstat (limited to 'BER Plots.ipynb')
-rw-r--r-- | BER Plots.ipynb | 363 |
1 files changed, 339 insertions, 24 deletions
diff --git a/BER Plots.ipynb b/BER Plots.ipynb index 4e71d1a..f51efe8 100644 --- a/BER Plots.ipynb +++ b/BER Plots.ipynb @@ -2,14 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 13, + "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "import math\n", + "import statistics\n", + "import json\n", "\n", "import numpy as np\n", - "from matplotlib import pyplot as plt" + "from matplotlib import pyplot as plt\n", + "import matplotlib as mpl\n", + "import tqdm" ] }, { @@ -23,28 +27,323 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "from math import nan, inf\n", - "data = {'dec_proto_am_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.1706362050026655, -1.193387892562896, -1.2494141100905836, -1.273546683602035, -1.3226867043413222, -1.3284842972643673, -1.4249085476621985, -2.4881654670462012, -2.9280282892286777, -1.8337596086785197, -3.4516299068927765, -3.6739503433927894, -3.85142894461751, -4.2109690103679895, -4.841764334589243, -5.121118910610676, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0.000562024584446438, 0.002583366143280799, 0.003536123538459578, 0.0060136203314800725, 0.0017120634851061035, 0.01202664019209608, 0.009352711681458127, 0.010626429313400118, 0.0031605552412962345, 0.07580074150906693, 0.008303067934118849, 0.010968003992851543, 0.010921403354231309, 0.014436211616218221, 0.045257276108434545, 0.05063300417965297, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]), 'dec_proto_am_dc_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.208226392045617, -1.2001309534534812, -1.2082590111531317, -1.2057580375112593, -1.214704089694553, -1.231758143831406, -1.2328452042170934, -1.2342556988606688, -1.2555496906861663, -1.2633800823241472, -1.2801077286712825, -1.292429564986378, -1.2502315024699062, -1.2731027859982436, -1.3264964096914462, -1.350060076963517, -1.402916835230801, -1.6361557068303227, -1.3996004345826805, -2.025891115888953, -2.2259163050377957, -2.403329889470167, -2.5532801901852644, -2.6723825335502625, -2.7451475376985512, -2.7838943274880226, -2.7973828878928355, -2.8114503007382154, -2.7500487601808214, -2.7576294792325875, -2.7531131004032336, -2.771351588479543, -2.763352069271704, -2.7856492625232554, -2.8089246354122395, -2.805404500961304], [0.0006223969511333752, 0.001109700896962153, 0.00210398864758181, 0.0009171589283670842, 0.01005799259051457, 0.01198940071540007, 0.013730311872618627, 0.020358273695306007, 0.019376830251761356, 0.02698367824924875, 0.03015560422449139, 0.04189253434399468, 0.04626542022859063, 0.07217384274518368, 0.08584595043975161, 0.12539079396237413, 0.09791907379447246, 0.10581626829587948, 0.18250650933422224, 0.07591527055792387, 0.20120497031325296, 0.2529568393261202, 0.3140587593946733, 0.3626712973758648, 0.39454531783086805, 0.40694947364033235, 0.4101018950589088, 0.38136874448954844, 0.4108311426740005, 0.40839715897167816, 0.4083367927775933, 0.40823628264400785, 0.4080951641200549, 0.40959607776701595, 0.40969886669408834, 0.4099477409126599]), 'dec_proto_fm_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.3057961403392255, -1.3484294968657196, -1.4667961434461176, -2.8690875116735697, -1.6547222812660038, -1.3891625558026135, -3.5982019547373056, -3.771391890011728, -4.029223203659058, -4.187133187428117, -4.5257152915000916, -4.8291374538093805, -4.9882102105766535, -4.988903861492872, -4.977243402972817, -4.991583617404103, -4.978662932291627, -4.995597720146179, -4.980234434828162, -4.898328188806772, -4.886065758764744, -4.892892232164741, -4.887955756857991, -4.894121825695038, -4.874834077432752, -4.881909834221005, -4.885749246925116, -4.879474958404899, -4.893610496073961, -4.893589161336422, -4.900892127305269, -4.89244575984776, -4.886744260787964, -4.895636919885874, -4.909515650942922, -4.8994301706552505], [0.014213245118859085, 0.001330722343276248, 0.013951488821076687, 0.0041134580502828425, 0.038365233682153145, 0.030733212747131068, 0.0091992661239188, 0.010529797577944408, 0.014647350039240111, 0.014036738695564741, 0.0201667482688038, 0.03195929762792339, 0.050554225347760565, 0.05155121488079693, 0.05696637316379902, 0.05194819962648275, 0.04815391425232906, 0.04198674248536032, 0.0531488148233794, 0.043095657257340825, 0.05140641385191975, 0.047935496094956176, 0.05329373773860191, 0.05040869503181174, 0.05644083328947176, 0.053389328604204575, 0.05074839526504205, 0.053625197798602975, 0.047252304573416753, 0.051310379811370974, 0.046438087027853785, 0.05365724267638675, 0.0534321058650641, 0.04956836848859283, 0.04218369035098332, 0.05032427561533336])}" + "#from math import nan, inf\n", + "#data = {'dec_proto_am_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.1706362050026655, -1.193387892562896, -1.2494141100905836, -1.273546683602035, -1.3226867043413222, -1.3284842972643673, -1.4249085476621985, -2.4881654670462012, -2.9280282892286777, -1.8337596086785197, -3.4516299068927765, -3.6739503433927894, -3.85142894461751, -4.2109690103679895, -4.841764334589243, -5.121118910610676, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0.000562024584446438, 0.002583366143280799, 0.003536123538459578, 0.0060136203314800725, 0.0017120634851061035, 0.01202664019209608, 0.009352711681458127, 0.010626429313400118, 0.0031605552412962345, 0.07580074150906693, 0.008303067934118849, 0.010968003992851543, 0.010921403354231309, 0.014436211616218221, 0.045257276108434545, 0.05063300417965297, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]), 'dec_proto_am_dc_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.208226392045617, -1.2001309534534812, -1.2082590111531317, -1.2057580375112593, -1.214704089694553, -1.231758143831406, -1.2328452042170934, -1.2342556988606688, -1.2555496906861663, -1.2633800823241472, -1.2801077286712825, -1.292429564986378, -1.2502315024699062, -1.2731027859982436, -1.3264964096914462, -1.350060076963517, -1.402916835230801, -1.6361557068303227, -1.3996004345826805, -2.025891115888953, -2.2259163050377957, -2.403329889470167, -2.5532801901852644, -2.6723825335502625, -2.7451475376985512, -2.7838943274880226, -2.7973828878928355, -2.8114503007382154, -2.7500487601808214, -2.7576294792325875, -2.7531131004032336, -2.771351588479543, -2.763352069271704, -2.7856492625232554, -2.8089246354122395, -2.805404500961304], [0.0006223969511333752, 0.001109700896962153, 0.00210398864758181, 0.0009171589283670842, 0.01005799259051457, 0.01198940071540007, 0.013730311872618627, 0.020358273695306007, 0.019376830251761356, 0.02698367824924875, 0.03015560422449139, 0.04189253434399468, 0.04626542022859063, 0.07217384274518368, 0.08584595043975161, 0.12539079396237413, 0.09791907379447246, 0.10581626829587948, 0.18250650933422224, 0.07591527055792387, 0.20120497031325296, 0.2529568393261202, 0.3140587593946733, 0.3626712973758648, 0.39454531783086805, 0.40694947364033235, 0.4101018950589088, 0.38136874448954844, 0.4108311426740005, 0.40839715897167816, 0.4083367927775933, 0.40823628264400785, 0.4080951641200549, 0.40959607776701595, 0.40969886669408834, 0.4099477409126599]), 'dec_proto_fm_ber_top.py': ([1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10.0, 12.0, 15.0, 18.0, 22.0, 27.0, 33.0, 39.0, 47.0, 56.0, 68.0, 82.0, 100.0, 120.0, 150.0, 180.0, 220.00000000000003, 270.0, 330.0, 390.0, 470.0, 560.0, 680.0, 819.9999999999999], [-1.3057961403392255, -1.3484294968657196, -1.4667961434461176, -2.8690875116735697, -1.6547222812660038, -1.3891625558026135, -3.5982019547373056, -3.771391890011728, -4.029223203659058, -4.187133187428117, -4.5257152915000916, -4.8291374538093805, -4.9882102105766535, -4.988903861492872, -4.977243402972817, -4.991583617404103, -4.978662932291627, -4.995597720146179, -4.980234434828162, -4.898328188806772, -4.886065758764744, -4.892892232164741, -4.887955756857991, -4.894121825695038, -4.874834077432752, -4.881909834221005, -4.885749246925116, -4.879474958404899, -4.893610496073961, -4.893589161336422, -4.900892127305269, -4.89244575984776, -4.886744260787964, -4.895636919885874, -4.909515650942922, -4.8994301706552505], [0.014213245118859085, 0.001330722343276248, 0.013951488821076687, 0.0041134580502828425, 0.038365233682153145, 0.030733212747131068, 0.0091992661239188, 0.010529797577944408, 0.014647350039240111, 0.014036738695564741, 0.0201667482688038, 0.03195929762792339, 0.050554225347760565, 0.05155121488079693, 0.05696637316379902, 0.05194819962648275, 0.04815391425232906, 0.04198674248536032, 0.0531488148233794, 0.043095657257340825, 0.05140641385191975, 0.047935496094956176, 0.05329373773860191, 0.05040869503181174, 0.05644083328947176, 0.053389328604204575, 0.05074839526504205, 0.053625197798602975, 0.047252304573416753, 0.051310379811370974, 0.046438087027853785, 0.05365724267638675, 0.0534321058650641, 0.04956836848859283, 0.04218369035098332, 0.05032427561533336])}" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 54, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75ad09f7b6df4c1aa68ef78b1e4ceb0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=380), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Will launch 450 simulation jobs in 38 batches of 12\n", + "Starting batch 1/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 2/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 3/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 4/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 5/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 6/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 7/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 8/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 9/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 10/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 11/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 12/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 13/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 14/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 15/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 16/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 17/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 18/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 19/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 20/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 21/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 22/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 23/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 24/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 25/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 26/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 27/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 28/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 29/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 30/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 31/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 32/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 33/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 34/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 35/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 36/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 37/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "Starting batch 38/38...\n", + "done.\n", + "Waiting for simulation:\n", + "Terminating processes...\n", + "done.\n", + "Processing simulation results\n", + "\n" + ] + } + ], + "source": [ + "import sweep_gr_sims\n", + "data = sweep_gr_sims.run_simulation(\n", + " amplitudes = [10**x for x in np.linspace(0, 2.5, 30)],\n", + " #simulations=['dec_proto_am_ber_top.py'],\n", + " duration=10.0,\n", + " forklimit=12,\n", + " repeat_runs=5,\n", + " tqdm=tqdm.tqdm_notebook)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ - "labels = {'dec_proto_am_ber_top.py': 'ASK',\n", + "with open('results_digitalocean2.json') as f:\n", + " data = json.loads(f.read())\n", + " for sim in list(data):\n", + " data[sim] = {\n", + " float(a): entry for a, entry in data[sim].items()\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "#with open('gr_sweep_results2.json', 'w') as f:\n", + "# f.write(json.dumps(data))" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "labels = {\n", " 'dec_proto_am_dc_ber_top.py': '\"DC\"',\n", - " 'dec_proto_fm_ber_top.py': 'FSK'}" + " 'dec_proto_am_ber_top.py': 'ASK',\n", + " 'dec_proto_fm_ber_top.py': 'FSK'\n", + "}" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 111, "metadata": { "scrolled": false }, @@ -832,7 +1131,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"900\">" + "<img src=\"\" width=\"900\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -840,31 +1139,47 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'BER [dB]')" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "fig, ax = plt.subplots(figsize=(9, 5))\n", "ax.set_title('BERs for basic modulation types')\n", - "for sim, (ampls, bers, stdevs) in data.items():\n", + "if data.keys() - labels.keys():\n", + " raise ValueError(f'Unmatched simulation labels: {data.keys() - labels.keys()}')\n", + "for sim, label in labels.items():\n", + " d = data[sim]\n", + " ampls = np.array(sorted(list(d.keys())))\n", + " # We've left the gnuradio BER block at its default setting, a cutoff at -70dB BER,\n", + " # so we replace -inf with -7 here.\n", + " filter_inf = lambda l: [ x for x in l if math.isfinite(x) ] or [-7]\n", + " filter_nan = lambda l: [ x for x in l if math.isfinite(x) ] or [math.nan]\n", + " bers = np.array([ statistics.mean(filter_inf(d[a][0])) for a in ampls ])\n", + " #stdevs = [ statistics.stdev(filter_inf(d[a][0])) if len(filter_inf(d[a][0]))>1 else 0 for a in ampls ]\n", + " stdevs = np.array([ math.sqrt(statistics.mean([x**2 for x in filter_nan(d[a][1])] + [0])) for a in ampls ])\n", + " \n", " # The Gnuradio BER block calculates bit error rate over whole bytes, but we only feed in bits casted\n", " # to bytes. We correct for this by adding log10(8).\n", - " bers = [(x + math.log10(8))*10 for x in bers]\n", - " ax.errorbar(ampls, bers, yerr=stdevs, label=labels[sim])\n", + " # Also convert log10 values to dB.\n", + " bers = (bers + math.log10(8))*10\n", + " stdevs *= 10\n", + " #ax.errorbar(ampls, bers, yerr=stdevs, label=label)\n", + " p, = ax.plot(ampls, bers, label=label)\n", + " \n", + " ax.fill_between(ampls, bers-stdevs, bers+stdevs,\n", + " alpha=0.3, facecolor=p.get_color(), linewidth=0)\n", "ax.grid()\n", "ax.legend()\n", "ax.set_xscale('log')\n", "ax.set_xlabel('Amplitude Δf [mHz]')\n", - "ax.set_ylabel('BER [dB]')" + "ax.set_ylabel('BER [dB]')\n", + "ax.set_ylim([-50, 0])\n", + "ber05 = 10*math.log10(0.5)\n", + "ax.axhline(ber05, linestyle='--', color='red')\n", + "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", + "xform = mpl.transforms.blended_transform_factory(ax.transAxes, ax.transData)\n", + "ax.text(0.9, ber05, f'BER=0.5', transform=xform, color='white', bbox=bbox, ha='center', va='center')\n", + "\n", + "None" ] } ], |