summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--controller/fw/Makefile5
-rw-r--r--controller/fw/src/dsss_demod.c88
-rw-r--r--controller/fw/src/dsss_demod.h2
-rw-r--r--controller/fw/tools/dsss_demod_test.c25
-rw-r--r--lab-windows/scratch.ipynb103
5 files changed, 166 insertions, 57 deletions
diff --git a/controller/fw/Makefile b/controller/fw/Makefile
index 2c75bbf..3b9cca6 100644
--- a/controller/fw/Makefile
+++ b/controller/fw/Makefile
@@ -51,11 +51,12 @@ FMEAS_SAMPLING_RATE ?= 10.0
DSSS_GOLD_CODE_NBITS ?= 5
DSSS_DECIMATION ?= 10
+# TODO maybe auto adjust this based on detection rate?
DSSS_THESHOLD_FACTOR ?= 5.0f
DSSS_WAVELET_WIDTH ?= 7.3
DSSS_WAVELET_LUT_SIZE ?= 69
-DSSS_FILTER_FC ?= 10e-3
-DSSS_FILTER_ORDER ?= 10
+DSSS_FILTER_FC ?= 3e-3
+DSSS_FILTER_ORDER ?= 12
CC := $(PREFIX)gcc
CXX := $(PREFIX)g++
diff --git a/controller/fw/src/dsss_demod.c b/controller/fw/src/dsss_demod.c
index 7feb41b..cc1c34e 100644
--- a/controller/fw/src/dsss_demod.c
+++ b/controller/fw/src/dsss_demod.c
@@ -22,70 +22,77 @@ float gold_correlate_step(const size_t ncode, const float a[DSSS_CORRELATION_LEN
float cwt_convolve_step(const float v[DSSS_WAVELET_LUT_SIZE], size_t offx);
float run_iir(const float x, const int order, const struct iir_biquad q[order], struct iir_biquad_state st[order]);
float run_biquad(float x, const struct iir_biquad *const q, struct iir_biquad_state *const restrict st);
+void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug);
#ifdef SIMULATION
-void dsss_demod_step(struct dsss_demod_state *st, float new_value, size_t sim_pos) {
-#else /* SIMULATION */
+void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug) {
+ if (!debug)
+ return;
+
+ if (index) {
+ DEBUG_PRINTN(" %16s [", "");
+ for (size_t i=0; i<len; i++)
+ DEBUG_PRINTN("%8d ", i);
+ DEBUG_PRINTN("]\n");
+ }
+
+ DEBUG_PRINTN(" %16s: [", name);
+ for (size_t i=0; i<len; i++)
+ DEBUG_PRINTN("%8.5f, ", data[i*stride]);
+ DEBUG_PRINTN("]\n");
+}
+#else
+void debug_print_vector(const char *name, size_t len, const float *data, size_t stride, bool index, bool debug) {}
+#endif
+
+#ifdef SIMULATION
+void dsss_demod_step(struct dsss_demod_state *st, float new_value, size_t sim_pos, int record_channel) {
+ bool debug = (record_channel == -1)
+ && (sim_pos > 1000)
+ && (sim_pos % DSSS_CORRELATION_LENGTH == DSSS_CORRELATION_LENGTH-1);
+
+ if (debug) DEBUG_PRINT("Iteration %zd: signal=%f", sim_pos, new_value);
+#else
void dsss_demod_step(struct dsss_demod_state *st, float new_value) {
-#endif /* SIMULATION */
+#endif
-//#define DEBUG_PRINT(...) ((void)0)
-//#define DEBUG_PRINTN(...) ((void)0)
- bool debug = sim_pos % DSSS_CORRELATION_LENGTH == DSSS_CORRELATION_LENGTH-1;
- //bool debug = sim_pos > 1000;
- if (debug) DEBUG_PRINT("Iteration %zd", sim_pos);
//const float peak_group_threshold = 0.05 * DSSS_CORRELATION_LENGTH;
//const float hole_patching_threshold = 0.01 * DSSS_CORRELATION_LENGTH;
st->signal[st->signal_wpos] = new_value;
st->signal_wpos = (st->signal_wpos + 1) % ARRAY_LENGTH(st->signal);
- if (debug) DEBUG_PRINT(" signal: %f", new_value);
/* use new, incremented wpos for gold_correlate_step as first element of old data in ring buffer */
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
st->correlation[i][st->correlation_wpos] = gold_correlate_step(i, st->signal, st->signal_wpos, false);
- /* debug */
- if (debug) {
- DEBUG_PRINTN(" [");
- for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
- DEBUG_PRINTN("%8d ", i);
- DEBUG_PRINTN("]\n");
- DEBUG_PRINTN(" correlation: [");
- for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
- DEBUG_PRINTN("%8.5f, ", st->correlation[i][st->correlation_wpos]);
- DEBUG_PRINTN("]\n");
- }
- /* end */
+
+ debug_print_vector("correlation",
+ DSSS_GOLD_CODE_COUNT, &st->correlation[0][st->correlation_wpos], DSSS_WAVELET_LUT_SIZE, true, debug);
+
st->correlation_wpos = (st->correlation_wpos + 1) % ARRAY_LENGTH(st->correlation[0]);
float cwt[DSSS_GOLD_CODE_COUNT];
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
cwt[i] = cwt_convolve_step(st->correlation[i], st->correlation_wpos);
- /* debug */
- if (debug) DEBUG_PRINTN(" cwt: [");
- for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
- if (debug) DEBUG_PRINTN("%8.5f, ", cwt[i]);
- if (debug) DEBUG_PRINTN("]\n");
- /* end */
+
+ debug_print_vector("cwt", DSSS_GOLD_CODE_COUNT, cwt, 1, false, debug);
float avg[DSSS_GOLD_CODE_COUNT];
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
avg[i] = run_iir(fabs(cwt[i]), ARRAY_LENGTH(cwt_filter_bq), cwt_filter_bq, st->cwt_filter[i].st);
- /* debug */
- if (debug) DEBUG_PRINTN(" avg: [");
- for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++)
- if (debug) DEBUG_PRINTN("%8.5f, ", avg[i]);
- if (debug) DEBUG_PRINTN("]\n");
- /* end */
+
+ debug_print_vector("avg", DSSS_GOLD_CODE_COUNT, avg, 1, false, debug);
+
+ if (record_channel != -1)
+ DEBUG_PRINTN("%f, %f, %f\n",
+ st->correlation[record_channel][st->correlation_wpos], cwt[record_channel], avg[record_channel]);
float max_val = st->group.max;
int max_ch = st->group.max_ch;
int max_idx = st->group.max_idx + 1;
bool found = false;
- //if (debug) DEBUG_PRINTN(" rel: [");
for (size_t i=0; i<DSSS_GOLD_CODE_COUNT; i++) {
float val = cwt[i] / avg[i];
- //if (debug) DEBUG_PRINTN("%f, ", val);
if (fabs(val) > DSSS_THESHOLD_FACTOR)
found = true;
@@ -96,12 +103,6 @@ void dsss_demod_step(struct dsss_demod_state *st, float new_value) {
max_idx = st->group.len;
}
}
- //if (debug) DEBUG_PRINTN("]\n");
-
- /* debug */
- if (debug) DEBUG_PRINT(" found=%d len=%d idx=%d ch=%d max=%f",
- found, st->group.len, st->group.max_idx, st->group.max_ch, st->group.max);
- /* end */
if (found) {
/* Continue ongoing group */
@@ -117,8 +118,9 @@ void dsss_demod_step(struct dsss_demod_state *st, float new_value) {
return;
/* A group ended. Process result. */
- DEBUG_PRINT("GROUP FOUND: %8d len=%3d max=%f ch=%d offx=%d",
- sim_pos, st->group.len, st->group.max, st->group.max_ch, st->group.max_idx);
+ if (record_channel == -1)
+ DEBUG_PRINT("GROUP FOUND: %8d len=%3d max=%f ch=%d offx=%d",
+ sim_pos, st->group.len, st->group.max, st->group.max_ch, st->group.max_idx);
/* reset grouping state */
st->group.len = 0;
diff --git a/controller/fw/src/dsss_demod.h b/controller/fw/src/dsss_demod.h
index 8ab5cac..b6947bc 100644
--- a/controller/fw/src/dsss_demod.h
+++ b/controller/fw/src/dsss_demod.h
@@ -36,7 +36,7 @@ struct dsss_demod_state {
};
#ifdef SIMULATION
-void dsss_demod_step(struct dsss_demod_state *st, float new_value, size_t sim_pos);
+void dsss_demod_step(struct dsss_demod_state *st, float new_value, size_t sim_pos, int record_channel);
#else /* SIMULATION */
void dsss_demod_step(struct dsss_demod_state *st, float new_value);
#endif /* SIMULATION */
diff --git a/controller/fw/tools/dsss_demod_test.c b/controller/fw/tools/dsss_demod_test.c
index 51742b1..4370f80 100644
--- a/controller/fw/tools/dsss_demod_test.c
+++ b/controller/fw/tools/dsss_demod_test.c
@@ -13,11 +13,11 @@
#include "dsss_demod.h"
void print_usage() {
- fprintf(stderr, "Usage: dsss_demod_test [test_data.bin]\n");
+ fprintf(stderr, "Usage: dsss_demod_test [test_data.bin] [optional recording channel number]\n");
}
int main(int argc, char **argv) {
- if (argc != 2) {
+ if (argc != 2 && argc != 3) {
fprintf(stderr, "Error: Invalid arguments.\n");
print_usage();
return 1;
@@ -46,7 +46,18 @@ int main(int argc, char **argv) {
return 2;
}
- fprintf(stderr, "Reading %zd samples test data...", st.st_size/sizeof(float));
+ int record_channel = -1;
+ if (argc == 3) {
+ char *endptr;
+ record_channel = strtoul(argv[2], &endptr, 10);
+ if (!endptr || *endptr != '\0') {
+ fprintf(stderr, "Invalid channel number \"%s\"\n", argv[2]);
+ return 1;
+ }
+ }
+
+ if (record_channel != -1)
+ fprintf(stderr, "Reading %zd samples test data...", st.st_size/sizeof(float));
size_t nread = 0;
while (nread < st.st_size) {
ssize_t rc = read(fd, buf, st.st_size - nread);
@@ -66,18 +77,20 @@ int main(int argc, char **argv) {
nread += rc;
}
- fprintf(stderr, " done.\n");
+ if (record_channel != -1)
+ fprintf(stderr, " done.\n");
const size_t n_samples = st.st_size / sizeof(float);
float *buf_f = (float *)buf;
- fprintf(stderr, "Starting simulation.\n");
+ if (record_channel != -1)
+ fprintf(stderr, "Starting simulation.\n");
struct dsss_demod_state demod;
memset(&demod, 0, sizeof(demod));
for (size_t i=0; i<n_samples; i++) {
//fprintf(stderr, "Iteration %zd/%zd\n", i, n_samples);
- dsss_demod_step(&demod, buf_f[i], i);
+ dsss_demod_step(&demod, buf_f[i], i, record_channel);
}
return 0;
diff --git a/lab-windows/scratch.ipynb b/lab-windows/scratch.ipynb
index 671bedf..ddd2455 100644
--- a/lab-windows/scratch.ipynb
+++ b/lab-windows/scratch.ipynb
@@ -2,11 +2,12 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
+ "import csv\n",
"\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
@@ -17,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -170,13 +171,105 @@
"source": [
"sig.butter(8, 20e-3, output='sos', fs=10.0)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "655ce5c77d2a4047905245df39a095b0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7f4609ce6a90>]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "ax.plot([0-0.00012937261, 0-0.00022784119 , 0-0.00039295876 , 0-0.00066361829 , 00-0.0010971602 , 00-0.0017754816 ,\n",
+ " 00-0.0028116399 , 00-0.0043560231 , 00-0.0066005666 , 00-0.0097788338 , 000-0.014159188 , 000-0.020027947 ,\n",
+ " 000-0.027659611 , 000-0.037272236 , 000-0.048968014 , 0000-0.06266222 , 0000-0.07800759 , 000-0.094325546 ,\n",
+ " 0000-0.11055938 , 0000-0.12526666 , 0000-0.13666715 , 0000-0.14275811 , 0000-0.14149973 , 00000-0.1310612 ,\n",
+ " 0000-0.11010384 , 000-0.078063987 , 000-0.035389599 , 00000.016317957 , 00000.074297836 , 000000.13478363 ,\n",
+ " 000000.19331697 , 000000.24519242 , 000000.28597909 , 000000.31204596 , 000000.32101141 , 000000.31204596 ,\n",
+ " 000000.28597909 , 000000.24519242 , 000000.19331697 , 000000.13478363 , 00000.074297836 , 00000.016317957 ,\n",
+ " 000-0.035389599 , 000-0.078063987 , 0000-0.11010384 , 00000-0.1310612 , 0000-0.14149973 , 0000-0.14275811 ,\n",
+ " 0000-0.13666715 , 0000-0.12526666 , 0000-0.11055938 , 000-0.094325546 , 0000-0.07800759 , 0000-0.06266222 ,\n",
+ " 000-0.048968014 , 000-0.037272236 , 000-0.027659611 , 000-0.020027947 , 000-0.014159188 , 00-0.0097788338 ,\n",
+ " 00-0.0066005666 , 00-0.0043560231 , 00-0.0028116399 , 00-0.0017754816 , 00-0.0010971602 , 0-0.00066361829 ,\n",
+ " 0-0.00039295876 , 0-0.00022784119 , 0-0.00012937261 ])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = np.genfromtxt('/tmp/foo.csv', delimiter=',')[1000:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7c771472882e4ceeb8aeddfa5c08ca17",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, axs = plt.subplots(2, figsize=(15, 9), sharex=True)\n",
+ "axs = axs.flatten()\n",
+ "axs[0].set_title('corr')\n",
+ "axs[1].set_title('cwt')\n",
+ "#axs[2].set_title('iir')\n",
+ "\n",
+ "axs[0].plot(data[:,0], label='corr')\n",
+ "axs[1].plot(data[:,1], label='cwt')\n",
+ "axs[0].plot(data[:,2], label='avg')\n",
+ "axs[1].plot(data[:,2], label='avg')\n",
+ "\n",
+ "for ax in axs:\n",
+ " ax.legend()\n",
+ " ax.grid()"
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "winlabenv",
+ "display_name": "labenv",
"language": "python",
- "name": "winlabenv"
+ "name": "labenv"
},
"language_info": {
"codemirror_mode": {
@@ -188,7 +281,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.6"
+ "version": "3.8.1"
}
},
"nbformat": 4,