summaryrefslogtreecommitdiff
path: root/notebooks/grid_frequency_spectra.ipynb
diff options
context:
space:
mode:
authorjaseg <git-bigdata-wsl-arch@jaseg.de>2021-04-09 18:38:02 +0200
committerjaseg <git-bigdata-wsl-arch@jaseg.de>2021-04-09 18:38:57 +0200
commit50998fcfb916ae251309bd4b464f2c122e8cb30d (patch)
tree4ecf7a7443b75ab51c4dc0c0fc9289342dc7d6a0 /notebooks/grid_frequency_spectra.ipynb
parent312fee491cfab436d52db4b6265107e20f3e1293 (diff)
downloadmaster-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.gz
master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.bz2
master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.zip
Repo re-org
Diffstat (limited to 'notebooks/grid_frequency_spectra.ipynb')
-rw-r--r--notebooks/grid_frequency_spectra.ipynb399
1 files changed, 399 insertions, 0 deletions
diff --git a/notebooks/grid_frequency_spectra.ipynb b/notebooks/grid_frequency_spectra.ipynb
new file mode 100644
index 0000000..983db07
--- /dev/null
+++ b/notebooks/grid_frequency_spectra.ipynb
@@ -0,0 +1,399 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import csv\n",
+ "\n",
+ "import numpy as np\n",
+ "from matplotlib import pyplot as plt\n",
+ "import scipy.fftpack"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib widget"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = np.genfromtxt('data/Netzfrequenz_Sekundenwerte_2012_KW37.csv', delimiter=',')[1:,1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "171a6975a39e48bcac5e1247903b70f4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7f0144563d30>]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "ax.plot(data[:3600*24, 0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.02051102806199375"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.std(data[:,0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2b835c8fb082428cabc1ad9112286728",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(1e-06, 0.5)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Number of samplepoints\n",
+ "N = len(data[:,0])\n",
+ "# sample spacing\n",
+ "T = 1.0\n",
+ "x = np.linspace(0.0, N*T, N)\n",
+ "yf = scipy.fftpack.fft(data[:,0])\n",
+ "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
+ "\n",
+ "yf = 2.0/N * np.abs(yf[:N//2])\n",
+ "\n",
+ "#yf = sum(yf[s::10] for s in range(10)) / 10\n",
+ "#xf = sum(xf[s::10] for s in range(10)) / 10\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.loglog(xf, yf)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
+ "ax.set_xlabel('T in s')\n",
+ "ax.set_ylabel('Amplitude Δf')\n",
+ "ax.grid()\n",
+ "ax.set_xlim([1/1000000, 0.5])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "94ca3cb49e7d452dab8f7e2e8d632b84",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(5e-07, 0.02)"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Number of samplepoints\n",
+ "N = len(data[:,0])\n",
+ "# sample spacing\n",
+ "T = 1.0\n",
+ "x = np.linspace(0.0, N*T, N)\n",
+ "yf = scipy.fftpack.fft(data[:,0])\n",
+ "xf = np.linspace(0.0, 1.0/(2.0*T), N//2)\n",
+ "\n",
+ "yf = 2.0/N * np.abs(yf[:N//2])\n",
+ "\n",
+ "average_from = lambda val, start, average_width: np.hstack([val[:start], [ np.mean(val[i:i+average_width]) for i in range(start, len(val), average_width) ]])\n",
+ "\n",
+ "average_width = 20\n",
+ "average_start = 100\n",
+ "yf = average_from(yf, average_start, average_width)\n",
+ "xf = average_from(xf, average_start, average_width)\n",
+ "yf = average_from(yf, 300, average_width)\n",
+ "xf = average_from(xf, 300, average_width)\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.loglog(xf, yf)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: f'{1/x:.1f}'))\n",
+ "ax.set_xlabel('T in s')\n",
+ "ax.set_ylabel('Amplitude Δf')\n",
+ "\n",
+ "for i, t in enumerate([45, 60, 600, 1200, 1800, 3600]):\n",
+ " ax.axvline(1/t, color='red', alpha=0.5)\n",
+ " ax.annotate(f'{t} s', xy=(1/t, 3e-3), xytext=(-15, 0), xycoords='data', textcoords='offset pixels', rotation=90)\n",
+ "#ax.text(1/60, 10,'60 s', ha='left')\n",
+ "ax.grid()\n",
+ "ax.set_xlim([1/60000, 0.5])\n",
+ "ax.set_ylim([5e-7, 2e-2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "91a04300b9164bd7a9915d0028f3e563",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ys = scipy.fftpack.fft(data[:,0])\n",
+ "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
+ "s = 60\n",
+ "\n",
+ "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
+ "\n",
+ "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
+ "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.loglog(xs[s//2:-s//2+1], ys)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2811a79d4ad8487f822750e4419ccfdb",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ys = scipy.fftpack.fft(data[:,0])\n",
+ "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
+ "s = 1\n",
+ "\n",
+ "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
+ "\n",
+ "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
+ "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c678197e011e4ab4982d3e1d2a2cee9a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ys = scipy.fftpack.fft(data[:,0])\n",
+ "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
+ "s = 1\n",
+ "\n",
+ "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
+ "\n",
+ "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
+ "\n",
+ "ys *= 2*np.pi*xs\n",
+ "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.loglog(xs[s//2:-s//2+1 if s > 1 else None], ys)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "52bcd29a41a54ed1bf9dc63e0c9e83d8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ys = scipy.fftpack.fft(data[:,0])\n",
+ "ys = 2.0/len(data) * np.abs(ys[:len(data)//2])\n",
+ "s = 30\n",
+ "\n",
+ "ys = np.convolve(ys, np.ones((s,))/s, mode='valid')\n",
+ "\n",
+ "xs = np.linspace(0, 1.0/2.0, len(data)//2)\n",
+ "\n",
+ "ys *= 2*np.pi*xs[s//2:-s//2+1]\n",
+ "\n",
+ "#xs = np.linspace(len(data)/2, 1, len(data)/2)\n",
+ "\n",
+ "fig, ax = plt.subplots(figsize=(9,5))\n",
+ "ax.loglog(xs[s//2:-s//2+1], ys)\n",
+ "ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _pos: 1/x))\n",
+ "ax.grid()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "15.923566878980893"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "1/0.0628"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "labenv",
+ "language": "python",
+ "name": "labenv"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}