diff options
author | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2020-05-22 17:49:34 +0200 |
---|---|---|
committer | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2020-05-22 17:49:34 +0200 |
commit | c9f9d26dffcbb8853c4bb75f0a39aaceac26bf8c (patch) | |
tree | 2d4006533552a39db5e1cc59ae0c9c26e3e02154 /ma | |
parent | 64eac66a8f8f97c4b6427d4d437f12586b376fc0 (diff) | |
download | master-thesis-c9f9d26dffcbb8853c4bb75f0a39aaceac26bf8c.tar.gz master-thesis-c9f9d26dffcbb8853c4bb75f0a39aaceac26bf8c.tar.bz2 master-thesis-c9f9d26dffcbb8853c4bb75f0a39aaceac26bf8c.zip |
ma: add diagrams
Diffstat (limited to 'ma')
-rwxr-xr-x | ma/resources/prototype_schema.drawio | 1 | ||||
-rwxr-xr-x | ma/resources/prototype_schema.pdf | bin | 0 -> 50553 bytes | |||
l---------[-rw-r--r--] | ma/safety_reset.pdf | bin | 19500186 -> 42 bytes | |||
-rw-r--r-- | ma/safety_reset.tex | 97 |
4 files changed, 57 insertions, 41 deletions
diff --git a/ma/resources/prototype_schema.drawio b/ma/resources/prototype_schema.drawio new file mode 100755 index 0000000..1f6a832 --- /dev/null +++ b/ma/resources/prototype_schema.drawio @@ -0,0 +1 @@ +<mxfile host="app.diagrams.net" modified="2020-05-22T15:41:43.504Z" agent="5.0 (Windows)" etag="X59RmNxlqvcwZW08FG--" version="13.1.3" type="device"><diagram id="C5RBs43oDa-KdzZeNtuy" name="Page-1">7V1be+JG0v41ucz36IRnfIkRxnKQCAaMxR0IInMyrMEW0q//6tRSS8DEk52ZzCZsHu9AI7Va1dV1eKu6+he7sT60XsfbZ38zna1+sYzp4Rfb/cWyrj6Z8P/YkHLD58+fuSF+nU+5ySwaevNsJo2GtL7Np7Nd6cL9ZrPaz7flxmjz8jKL9qW28evrJilf9sdmVX7qdhzPjhp60Xh13DqcT/fP8hbWp6L9bjaPn9WTzatr/mU9VhfLm+yex9NNojXZzV/sxutms+dP60NjtkLaKboMvXS4ai+vWvfd3X/Gg5vf+sHjr9zZ7dfckr/C6+xl/5e7bt7e/9Hf3j/ezfu/pi9XV5+iQ971+3j1JvT6xbpawUNupvN3fOd9KoS8+s8bvujNH5uX/a87muY6XGBaW+CUm+J3+BTjv65f/3W82813+9lU9QmDo275im/1pLrbQP4Zb/dvr7Nzj7JKj7BgLrf4EUa3hd+3s9f5erafvUrT78X3m+R5vp/1tuMIr09gjUDb8369gm8mjnJ+mCm2x++vm/14P9+8wFeDvr69TGdT+RZt1vNIPufsZFAvq1Vjs9q80vDsP/74w4oivGj/ulnOtF+mV5Or2pVQpycvZKjvMgxLvmv31epO7crOSfE+e93PDpUV8ifsZeY8D7JitgH6vKZwn+pFLXiRE3ZNvifFqjNV27O24j5L21gWepx3XTAzfBB+/gredr4bb7dQ9H1Xnr59nf3nbfYSpd/3Mc3dfr5mdpUeJ6//VYc/wfLT11tpjemL739/vVnOB9ab9SPXW+376ZJer/d9F4I7W2+mb6tvuxSMf+9q+F5cb3+E650fyfVX343rH2az6a89IP664MnvpAbAzkZmb2xeX8EGn59/3j+fc3+0HHeufjaO/vTdOLrxmm73mxj9TJjBcyw9XiNvvEx2+E//dR7HM2TO38Gy3kSb1YUJvz0T1j7/bMa7eSxX2eo2HjerPfr8ljEcv8/+2LyujzgCqLMvz2x5Kl42L7PKvEnTeDWP0XWLgJrEMUjreTRe1eWH9Xw6xcecZKWP8os2++bfIXIqk/35eLJPCRzru8319ZclDkuGQhK4s2i+qxhqX+V+XPjji/zxqfaTMQje/+cM0ti8vG9Wbxfz5Ye6oRVeqVl/txtq2R9ilmH/AzY1N/0+Gy8/fDFw4f51vNvDCJovz+OXaLZG+v5rGfK7eYI/H+P9CeDIc+6PD/P12/rXDzNUe76crebPmw0aP8eA3YWjvplZ9PNx1ClwoTLBs5dpHcNkhY2iz1mFdECe1/QJ6fp/hvFJNYTUcP35s2pwD0J6/pbq3zSO4cbDfC89WjX5jh3+Cg38TGgoOsQvqfal2l2VXT5Hs9PsMvlcwwlT7DCbHoUBP8IMQMrN22s0+4DxsR+/xrP9Fy6sneYujXtOeVCq7XWG6ON7+SVOcZQ84ffNHNXKOT3sXFeYkt9T7tLDhJWO7E/ljj7blY6YDkcdAROOU+2yLV6w+9KA7ZMDPjsuxyxf/6l0PXzgERSrLZ+D/2IBnsJCftoF+Nn89I9cgM7fubDsT9ZprfC1C8upXcMUl3nYgib9f853WWo1p/LYP1lqVUgSltr/XV/9gNX2+csG1CWC9C+y8n60I/vzRZasD8FiF0f2n8qQP507oizBi4P7z+K0n8/xtU8BvmcmHtgFLc8ciW+PJ7PV75vdXLLwJpv9frOGC1b4w804WsY0s+U5g//9cozm7zfII+PdljNTiUOggR5ZV62GaoHP0/F+DFqdv1q3u/f4F+vmACxmNX6/C6xReuNMhoe3KNsuw8yYj+8ejMjdvLftGzNaJ28T+/6lbT0s2tbjbjQ0V5OXh6ydNd/83ue5d/e8n7RqWWcdLH7v3W+mdw9JZ/75PbTvV+HTw3a6flxMLHM/sWpZe32djtLrtyj1i/te7pejhf7MqT1Na7af1t6jdfTu95e1Tu9z4s8/w11mOmqF+8hevU1bt057WMu81ItnLXM3efGvInv0oo8BerLbL5E8F+5360nbxvfN77n21s/G9K5+1U6v4erobZr5/L6Zl8D179inN8/pk02sh23Uul6O+/qYg/dRa5Xgb+2X4H36dL8YDUcw/umqva6tpo3r5mOz+x5ZcN/TDVy73PuN2nLa6mr0W72N7WARPt2sjt5B+03RMIR5iEBQhNZj1raK32Gs9nj4YIxdY+734zc/Wyad/vIwGRpzr/W8Gg+nmyn81uk5pt/vJsFiadFvd6Pt6GnamNjxtbeox36jfug0nKzTr9c6/WasXw/PsEZP99l4eP32e887tBdN6Hu1hHFn03XkwO/byXqfhdZtMupv9WuT9mKZthfd+Df3cRn2Q6cz9DO/7+88F+jdB7q4zT08Zwt9aLTeLidWQO+MzxgPayugM84j8PH9PHDC/i723MMSqJ7JSOgz8Nn77/NwMWs1P3mN+mdtBq4m69v9aPhgjYePttwzD58CpGASDqer0LreTWzv2psH6xH9F8Jb3sOsPqyidfA+aV2n8EYLoLuFf3DfHDhnCW/7HrVuF+OnhxpTp47UyWeo83LzPLIe9WuSM9dk49btcmJHMCNe5fft+8QyoL35FjS8GCjyGlnBc9QaXIU0g54FM2YFrm8d/76EdzIOQT98C7K64Wdhue/1A6zeR6BNzWg/Pb7BGDOgzX7Sq/bzmEbrx7dpw9yFT6tVBKt40rqtjZ68A87euHVtj+z77Qi4bbS+3UXWoPIOU+CSh/dpamocu0yq450Cd4+gr/aw4F5/UXf83pnrnoiDzz2L6F3hUHh+Dem8nwxvnfHQ3M7Wj0u5bj1+6mJ7OoL+208P7xE+H8Y4Wq+M9tB8hlW+ncxNkIwj4/Q9QAPr+fRvw/t3WOnvkz71WeLVyfDRCIcPz9NWE96zC5LKXIHUW4JUfQ56Jc5v1OPf71CObnsPzbDyC/YVWv7Vo3WdjtMblKBXIT73CfqcV/uhP1hJYbZdAzfvw6cuXAE0AX4ckDT8zQaJ5SawhvyrEUgjeBdDG3f+TPx9erdKRj1+JvBKNgGeCa2BLnUTkJY7kWrLEP8sc8v3XfenrdVu0lztcT1688/nx2oAl+5GvRNXfG7D6uysprBud1WaNa5pZIPlQ0unfNsqKK23g57UuWYHVFxNgBv6zPVxlSOB+4HKN6D7HlBu8SqZezKbh+fZ8DHFe6Z398+Tl4DoDdcZ0fr2LbIOMPODTbvvg3QID52+ZweNZN/p+yDTQYP2B+ZvJ7jgBu6K+Qkv9NnxUXbcgSZuHXAUhncXAL/G5m8vJGVR7u09F58SG4Eb1YJ5UgPJf/BBUgcLPw5T0JoLz+yQJk72PsgVGIHhL2LQEqgVoL0f79o4soXvBH2/5rl1kC0RtC+ddsMwQL6B5vCTTq/SV8OBFRrB37LSF9y/CE3fLfVlt+Gzvxigxjh4/Bnba9gOWsrx+xG1B/0mP9v1oJ+mGfS9Q7mfLtzbzQK3a5f7AXm68GygtlPuB96t3zT9rO6U+/HhswezsXSq4wkWdYvfd3Cg920k8NlPgK5mhT7QHpnBopuW+mgYqDuAVr5dGkvDAA0aAw26tYDmJrLxepi3fdBwDByjnw2Qnim2wXwhvTM/0+drCTT2gGYDoA0/VxtPBuOsAW3M4Hi+oP+4BvQvzRd8TpBuZdo08V2Sjjs4VGkMlgnM1cA+orHbBL6KrOpcga6yoN3kfsIdvhPf1y29kz9HfmoC71K7HWQyvtQBuocw7i7TRV2PnxcDu9MozRO/J4zD75XpC8+1gb6WPz9aExnwKliMUYXGyDfhIciaVRrDmgiNjtu0j2jcc6A9NHDtldcE8HLfB/p3jRJ9iB/CFOZF3qM0X0D/pemn2vv1kA8jJ8i6Nb6e3w/eG/pp1sDqdYJyP8CHXaDfwAnmJToBn3g26mJuFzqlCb6bHfQHTmW9cz/MmwXvzGEOskiemfeRj0XjHVkr8LwSL0dAG+QpH3gqLM070WzhZR031uY9pusDNzZhXiyNB23hfZCD9ZqflmiDawvsqRjmcqD1Jc9GO8qNM60vi9cvvAvOZeMMH/E6qvAj0qhZphHwBDzX6JRpBGOtw/XLo/UFtD+A7Zcdra8ssoAfnBIvFuvLObFOa3BPdSzQR5wEvdJYDjjPQAOzIsPgGpCzmXeoyDC4HnRNf6DNV8jrJVsC/UE2gA0JdsBuBLbRhDydlTHrbw4de7QKbbDD5uYKrHL43AVb/vpt1N+vx8PDrrOuvU/Wg09gn+0mDTO3szuL5qfIfkgn1n7Vmftm2Af5tvDztvbTdDu6e9h0FjBOt0vjh7/i9+EBtP8j2JN1sGWuzcm6W/3tPxOw6cCjfZ+CPdmxA9Dk16+jnrmH54PPANcMV0Znod/38BxZz8/Ry/3zrL99Ay95pd0HFkiwmVijdWQ9wn117b5r8FECsJOWV1WrA/yWNxznFPyT9jAwo5fR8/TuMR2xjRmXfaBr8FcealHrEW180sTQT4b/wgrGf/M/4JB5O3PWnv383EnJenpR1hF8Rs8PrJHvCAhZRgULPwEIfTqBB9mf/+/z9feChE5l11wgoQskdIGEfiQkBIJzlY16NXzWvOSytR7XEbhtBELg58wrC7G7Yp5AcTyD072crlerqdwTrm+hXxCarduX0bAAfUYCCWmgD/D04R1BEC9jQCgAVy/EuWk9poUCgznoOVUAggCn0jWN09egskCQA8aQVn6/mljX4D56JhhfFUAncPD6oOc4MG/Aw93q7wiK7MFoBofAS8GoqfaNtDaBNgj2gOJbGRHIBOafUj+gbMAlfunuBQgqubkw9vepNU3Z/R09T+4IbDsJxEytFawF5Ds0ArvnwJzNaLh6Gd91EfACQ7d57jrnS6DPTBTjadDJfJ61VqDAt6vRaeDHmNh1AZxGW6DPPny6fxkPHaDB43p6+p40B7KOfwN+ejAY3KuXebVVwBKytvagvIEfbo2wP5iXQBj3cAraYJCglQMicbR+WHfWt/DMRwSo5ueAnBzoWTMYwzJzDzIw+Yx6oLNG2WY+T91ivMXz4PcXNDIG/DzgEZB7oEeCklyLwEiZNFjGwzPhL0DDCe97H9gP20nrcA9jeIH1+H4WcGqtjAlcf/TOjetFmG2fYK2+lumUvNOYVvfNh0XJuNFoq89BVOIT4PP5aJhce0vmc6/Kg+sprP3HZDIEQ6ufA6RKNgpw2kSAJg1BdxGd4TqBhOD3h9Vv4JSAPABnYQmOUheM5CU6KeB4NcFBX1bnPYF7Nt5dYMyGBPiUDOBpbhg+gvSCz64YndYI6JuUDOmSkdnfgzF+/z62Blde9vgMBrrlZ3mbWq9X6DgH7lKM5+L3CdAE5Odz5G6RHm8jt/rb9h3WzAnD2txOUX7SGuxeBdp9MDcIkKfR+ramjP6KYf0OMjobwX2+/jzNmagAYBk41yYCYEGKgAY7dCgTwfHOEEwCxyftiJMDjh3oKeXoNcGhQ7sEnaIwJSB7Tg4yOoni3IbgcIIz1GAnHxxhRwCcmt+vW+BE4Wdw/nxwStH5isAp8wQsQMczThiQGDgwTnBQ0emC+8C5gv5pDPAsw0fHP3XgGr8GPELOGzmP/QE6mOh4gl4lp87yXd+B90An3AGnLSUgDvSTn8WowxSoVwOnkQGMPsz7AviPwJ0u2hEERnRcuBecJgGtEDw68Fh9oNfSgneGd+ja4CAm7MTGcH3TFmcYaB1lvksgoIHOMzjBCNrAeMKD73oy1iaOg513Avu6DA4uwC7pxwcC41zPAadO2pcOjDcVRxydbIfHGppAJ4vAxCzOBEwAu4acWek/QtDGFKcV2usZA1RIi660Lw2gmS3zD+Or12je3AG8fyzOL76/Z/J8NmmeFWAD82YGqVcGa7Oq/ACbA+xFcXgXYEdasL5Bdg5Y55TtF/j8aMzgPtTPYoV84e9vdujsanGWUw6ddezQOd8twH+qWMTFm7t4cxdv7kd6c8BPNesJVk443L3R/OiWWethNXrxJYhGn9NKaNA96D1TryN6+0juun+mYPQdBdkLv80Sr07z24okAF9JTS0JILePKBBf9SHYZ9SvqZ++5inYhEPwU2Bl+vPy77P1NQeHQT9XqL6YwSy3+wPw9zzUYXYwPx3oBx2FwTFYHf4l0P9zBPrLPGDVnqOG+TJpXc9D9CVy37jC1YVH0mN0QksRMPU1QqkuJ7wa8RByT8jjpIFn4HYTqe1Vr1XeW+7d1bbsgZF18IoyFiyFSrLAuRA92iXyxBR4nqVo/0va6GGBgDne1zYDA32SHicilOyWip9Jge6j38HPy5Mgyr99btsnUyfgDo2+5Zl4Ka+jA1DwcQdrx+cQf/1Q4bsX9GuilgmaYZBjIngNzWKxliT0j9QG//+FfUL43Rj14j3Y7RjMBps+MsCGBPvfocAK2Ljbo9mHe8aNIoBCwRC3EmDobxbBsGkE/TDTgg6yRjcYuDEkCFLTft9h+hW+14lAB/02Xl9vJ4sTfp4exIF3RJxour5Nx8NblC1gTQTGkwU+HXxHWxY5buLuv8Z/LT/j2wdgQNag/jBingvw39ym2XaXNmg9B/zEjH2bLvgLscOB1tDAALDy24DWBvh56PMcMNlCAn0YCK4FfY8CfT5qyoUKDPom+zyU4CAJBaCH4JkB9Y8+W2jxc6Fv17cl8JtBH+CjS2LFIgTt28T+U/AD0cdkv5ASMzwOYsJzgZ84aJg14frBoc2BQhN+40Ap+YIDg32bGNrBh6NnL8F/Ax91jmPyUgoZcdAZxhCyT0rP8+yA/TwYXx3oQkkRKQXIWzimJKEAIlklvs1BSy8VOsEzQuD5JfqG8FnRwwdaDohGvgp6ugMLfUoYp4NBUnj3jMcTG5RAAn4nWD9A5+ZBApwZzAHQBmjEwe+a70agexKY25j8bXkfG+iKNMY5r2GiCLcj/ghrkd6njvNMPivMHczxgPzoAOne99mPXsT4fiYHnAdIRxjTzY79xxD9Z/ax++DD9znAC9cDnUIKEuP7SCDd4YSMkJNmwIf1XZVYgQk8sUNz2Kf3kWSX5aFD9AI/NxsgBiC+fd0GOyKTIDtiITWeCwzUeg4n2dSBVyNOQOhHYHlGys/FpBPBP8DPRwx8jvgEcFoGvM2JA+jzW5LkAHZJLMkPmOgzOHCCTBOxk4yv78K8dw8+8dQS5gb65Pm2wPJV6yhDnlQYAdDH6bg+4Ry4FnL8AzwDmHfhEaBdYdESXgb0yKr2FcgCxKwMsP/2aAOBrDJAZ61Ev5dsTEzxoqS1J/Q4jn1tDqCe8MHTctJf24oKTfOZfJnMQW/xO3rhViXP3vi7vfAPbG+9eOEXL/zihX9fL3xqP/wRtR6fx+klrgrtoKeXiBvXOqcS7tHPxoR7sAGP/WyOr4I+Riwd7A2vOneX+OrfFF8tvw/w/lN9PwJ+A/5Ef24dDg9ZJd54Scy/JOb/5cR88DtrE8IASrFVS9mZoM/W+LmUxPgRH/dH+/LgR4Ns3iGGNnU3RtVnhjWahk9LFU+uxGyv16OXYAX3Jdp9up9/xs8GnxRjhS7oxyM/2zd8STQP+jEm09vsl4QJ+uXsE8YwW4OUfdouJuwe+dhwDXBlk32JBfh82YCTcrOlyT58ycfGGKGd+za5Pxs6wZF/jePqwvXkp9jg3x4C8jXB30dfjnxImDscuySgB4jZ9qq+NeK4sWxOAF940T3we3rgl4fko/toU3Hf8DzwlXo3C2hXfm3acev4jIRi1nA/08bDuD3HRDFhnRPZcZOBKf6gSnyG38CvdPGdIkyUxWTlGsdVmw7aMXC9jb4b+sZCM3xvmSegkdsU/3SQYJw3SOFdMdme6e6wvx9juwm+ahKw74/vjauLNxu4A4Pf1TdhvlNJNIZ23gBysr2VxBxrxgRj8hHB9+2aHUXjhcSEke4cHy/51pSwvSC/HuwAD5OgiTeAnrYkusO1sdBribkB9gm/+iDx5gPx1IL6AJ+6njJPD8B/Xyr+QszeVJiS+NSUIwBzITFoD/El8cEx6brO7Qugbb9JPruPCehp1Z/u1uAzzTHwO6yviHk0w2T5sOpLA1/C8xnDgnUDY5XNBb4bXfxo8YcrfnRe6+pv86NPFa45XyYqWuHBONEvX6hAq2/751/U4UWnqkqdKxgAz5TLivIBf7FO099VfsmpOeW5/vSXyy9VOqpmqp8ptvStihvZp6q5XHjkm5ToqpaS+/T5r/HIUUfXn34ojziXshcXPO6Cx/3deBz5iE8gVMPh6u1S/oIRnAijorWgvwQr/lQZjAizQ5OO23X89GR2DGWigiWcUVbvBZW7oHIXVO7fg8q1ohj4dhv2zHx0wwwRipvpUTYO5j/d3W9njTihDHfcQr8YZG1CVpJKm48lGg4g2RFpqWH2Hnj4Fsj8rb6tGfgBZYt8374RBw2TT9JuyzpHFA35ZqeyZiJrdTXqbwz/7sbpWLj1eLAftx4p+6yzoLILqg9YK+Z2cre8iix4l9TMRpilttjvRk8PBszCnrUprPtsY9F28gyRmLgW3cWfprAGRjA+ktXD2ktncZPMXNlmrW2h/uJW6+rOjHybtfcWZH4W4O6HxVJp0jXoFXuwvn6fuoODvwiPdiQpJJUyp3r1A+9qiw1CjNwuolC4fTzz7poxz8sSJMnA8tO6IHYDu+NSpg0++4ClAQjd6UdmkMUH3hWwRNTO9BhVSbCdURPMNAjToHfjee6SMyMoi+HmwNf6mNUCmt1DtG3PCNPAwGsE/akhfsHXejbqnSBTWQk4zjBmFBIRRGnnzAfHu23GQerUGDkM07bbNTHrKMAdBo263WY6Wh03AjoM3jD7Bd7T8VzUgfxu8A5GQO+NGRAx9mcxPZrYn8GoFWbr3Aw9t0kRL0SvOo0bRNUEIaXMIEYa+00brC1b0CDbX3iWZL4csBQLjEXQMB+zUAVRxDIBdUEthbaETqEep+vkvZsG6G1Bbk/QgzJZogzRWIVG4a4ORmPDJOh3iRY6bceNOvJ4FvSbwLeDOCJECz97Jsw7oYwgOWBOqRSD1l+TeYXXOdIr4+fzGLksjTYufh4hsJ0+lathmmQh0Iv6NnnshMAlxG/MX8w/NK46WqGESHZ414nBKK6DpRISLH2i8W1K2UK4awfRWKJt0w76lMGU0G6xPpW0oCwsymwiHsUMwib05SNt9iCnaojuwhjj6RxkQYoIJO5I8vB3kGlLA+hz6PRuGGWl3UCDImMK+a9XoVHfxzEJEonP5cw2sHYdQWGF5oSKCs0pi+wQuLGUzhD6c8abEeSZQwWNgHKpymTCXTq+S/R3gLYO0nkGmqSIvkj2oSUyc30P9my3hGTCurKD9HinYUX+GEAzpAms82gHc4o8acIzDyJ/kGaIeJvAR4zq09gTU60JXlNd3KlVo3JFbp3sUY92FQ3oM5dUaRose+q8Y4r4m8pxyBqk+bNBppIshM9qbcec6dV0JJqBJT1QthltKo3iCY8sURbFWDIF7k9x/nBNtPtdzAzEdSblV2KMUuC8cCmoBfEPZyi6A9V3yqg/PBOztOaOyNIlzDPIQN4BZ2HEBOUFl2PxWP5yuSiroA3JGylz003zd6XICd6Pa3zwJuvdZDmFO/VEhpfkx0Ct01q5HenuHfh+3P2Vv69OdyrHRPekqoQL0Sku6B5JyRmWt9SX0J0zOBHdx9JVWH7qVHs+/wbSPqAMRZlP4OWgz3NEtHPrsvYKHsc5z2UM0pwy9pbAm7xjD0vLME2Q3nx/wKWbhE60Dm2ND41yO9KZ9Jbh3W3iCc5DijsZI5NlINHAFN5HGoFu7pooP1hWkSyoqRJTKDs7rCdFNkppnj6va+aZrqwf4iPUL6nMP0buaJ1z+Z8Bj5ejfpSNKHwGOpf1kq6/jng5l6u+lPSh8ThiAxDtpTSUKXwT83VdtC9Ev5NcFV7HEmnC/8VYmdcXbDdI5M5k+V/X1wTbD/C+oj8ooxH1tFr/8H5yXam94Iu5Q/ITy35x9DE2OaM2fzebxxknkumKu1UxmpfTl2V0F2UM0RMzZTXdbGB2Ls8vlbfiXaSZp8oX5bo0QB6ltbss61htbkgukT1F2b2pZktYWIoM+qTsZV6HuMOW5MiBdsYiX5OeZvni005azACG9hT1VpfXUbmddqoK7+KaqjHS40u0j+jLO4BF/4otY5Lem+P93VR07F7Xy4Xdt1Sl7EiGaOvR4F2jA6fQ98q25L6EFtzXgmUUygixo9LCdqSdpWjPSeSzyX3MKZM8tzFEr0qpMuKFcvsc9Qjp5JO6Ur4f+SJ5Br/7Ff4L+ALgfyzGx/fk/krXut2Nh/fpuL/ba17iXvlMUesRfJLRFrxLA1G2zjJ4nrRW82i9/DRpPRq4a7z9FFCWxWQdXQVzlKVY2MhzOk/oN/GOd203+5d2vRc73JFOGcox0CO90u5dLItYO+l3q/0Ystc8xJx04CK04kHLIHdQETq2sgurTCw8l6TPTjih2qZJFt0iU9pR2jWLVJegiou0z9IPWfZitdGzZOUPUDLbenuvgfkEKG0GYKkoT6iwmL2SlGNLnaRRTyQ/ewpiqbOFyM9ibSJSUiz9+r7EteX3kc/J/vj9mV7aO4h2qZtotUiuSEpWZXmVV69hy6tXbc+luG6tlsZxNG6xznRJWxqfbj3r3qPmbZTawSoNUEKyBYgW/N6nnEOyNOIJaBSUxGTxoUaZ594kekJ7zRvQPBfW3IFYPiUtz+8tVnqSW+OeTr9U5pu9PE3Ty1yIRSA8wx7gXBVgRG9WvHNXaXrN05J9Ch3eU69p3HwOdW+K3ke8TqvQGPr9OY/lNJV+RDJX55w9R90T4vGRV+roHrJcLxax5i01En0d4hyZhEijpE+pjgPWa0BNIt4qe1ZtjXf5OUvSwkd8otaxRiuNf+Q9dG8tUlZ46fqy1aT3o69RprHKwQI+co7axeJmj5GtpXbhseUIQaXN4LobnNMk8iLW1tBOkynaPCaFF6yv48JDj4v7Co/TT2/g3bwUraEgq+O+nI1HRRIjso7Yus1lTVKiZ7lv3ePXkA59zehyQ3iu4KdqHyVZoo2b+0jL7yhrtgaW+lyrB7OeWLjfl79r++ykffQcrVfPoKWPNX3uLVfvwRy+RyO04qN7Rutb0N6Hmq6d20MtrjdUFsHNKrRWoIED0KSr98li64bDwzZ8ud92rMNqevewiuY6EhmiV4rZQMAXq69GJf8EhVQIAO49/jMEoBb0KM8O5qn73RCATuMcAhCdQQCiH4wAdL8VApCeQQCs8whAeEEAjhCAuIoAGF+BADhnEADn+yMAy58AAeieRQDEmz+FAFjfFgGILgjABxAAroF1jACwbj1GACrtX4sAZBcE4IIAfBkBiLOPIACY2Y+ZRT6sIM/GWCBJh54gAJpnpscDMXZXSBfc0QFW6mmLwaAjDvpdFcdUmovLg7NGIk0fZBSH+iprgXeC+8riyC0Ivka01zlLgbk712SsLZuC/cLnXi6JD7xCQiu3nrA6AiIlPSrHrsVoWUOctRDw+l4htUkzYUy+X1dWtrLK8DolnUrttJrEk6a5Y2myZ+RD+lFWWeOMdZCKBlOef2658YoXDwO1fnqqPV/R5HUoq6x72jIgrDOnP1pjaOUyv/QKSflxq4BiCrpEMSTeZ9LulwzpcXPltYyYqh3kHpjyxlQMuYmWmRFgJYQCKUrPWgRyhIXyBgsNHoqlNShQMUROpLoAW3BdQS/iLBDLAqvb4j0a35yzBIT/GIGRMZF35Z+3AmQXRVxY9hlpvSryhHxtFx74CQtgTusJ541QEd61pPrFKhGohc5ofz4+wdBoqcadv0/AaIzj4+6VxhnNz/h6xpZPqR1zAwxGa4CXqDImxV8PhTccndb6NIal7WM1TNbYuBOGK31g5ZDFQCqNdLH/I42P/ArvS++paVOKqbOWjYp18hFtz3MpOQF+nFvTDb0ds5VE9jTOaHrux5K1FOfX9OQIFje3iogHhIc+pOVFnhyweogghoySsLwTy0YhCPmRFCQT8nyE9KLhv5GGNz+k4WHWHKzV5KDvHpAWRa5tMo6nRVVLUtBVEiNvP5C/lNt1jNMqjIyycxC70/DTtoYHipQjv7iUpVJkIBk6ZlVgvZGWAXOzgeutdo4nNVnacsaFynQyxYfY5xyupDJjimJT65lVjM1VpGxSygzKMdqm4At5Jgxj+nOpdVT4HIXWaOgan95F+VuC8+VYnIoxCCZbYPhH+CjTrxSrkMwYxh5uwV/pD2CcXdKuiMnzQUs8DoWz03hTFRvhdxXfQs/UYXyz8SWaalk/KkOrr40XtaZYXDlGwNihwrY1jDzXxEmh0XWpUs7K4s8nsrLYxy9lXuXSf65naiGuijjeQMO3eTySjaUkayX2ESmrR8NUT/B4sQ6qmVjH6ycfN2dFkZVdbsuz2/5CJpFzlEmEGcGVOnSj9Iaw1/Ywryf39l9moTq8JxX4k2qUYd1jkEu95VfgwVPZO3EkxTPMDu+A9sFMUarh3csz069Ia/elj+HoeTJc7Wb9bYb17OBZK3jP9WlclzJMbdxJoEt2znT9Kml+tPf8i9J9PdpN7GlvYl3TvutgbjhH1RBVbXW1N72/xHrgYlGgF0d7Y7VsSR/lAHs4bqx9R+utq/CdhK0Ulr0dtugs5cmRdT7HeEQTLTpLYg81zkaNUsILyUqrO7i/mWWDHJDGcvtAMpFqi+FvXOsNrBRcb3hok2C6noF9ye8SOyQclNcljUdhawN1uJWlfad/PWmXWKlBe67p+WwFwZiANgqv82LQ2I5gdFkgY1RrkK1DnzwWxA9hHKmMF61iWN8oZ9UhXzF5WUgX8owyyvC1uC56qLBP9o4ISx+k3h3KatQpMdOCnh1iPybXLvtKmnIcFWkqMpGepw78SjroHX08+9uizPRh7US8JV+T84l1WH6txRUOH1bhV1lct8vRsCm1KLQ6E1+uuahqT8BcRRnqZJT/quYl2Uou1juoV2t5lvdun83T/+N4J8AeVmc6foo3R5JQRUV1aZlh9QLcgQ/c6y5BUmJF+RBW1s8sHY+iXj+DpMz+XFJ6eGwj4yKLLp0iADN/UBUfuXoi2pOc3QFaN5F8e6z8cVBZH0WedG6dVK5vGlg9QjJLsEqEydYD5ud2D+LDajnGKkuh2j9YYOD3eUU03ZTKGFiB8Xi/gLKKNGtRj2CLBEFv4CAVGbCaCEcFVLSunCUhlmsokW0v6SjU38V3kaokbgQraBnr0Yq2Fn2XTAzwOvDEiJgtG6w2uWjGOirNee0RHjtZE7xA9lSgZsP9JIxBiNcA3okvFUQGWJVDzVtGe0c4WnCAfm2s3KHjl4h3EVquMnzc5YEqjHBlUYcqg5SzhxTCbkv09KBFt7DyI80HaCv0tjI8MhYsUj6y9ijKUQfrrYnaFn1mCyvACD+oTBepKloXDJSsv4SOtxQsDWtZ5u/ajxOcOz5uEU/56NqVyFOKGoToKPcw7Tl7CtYAnmYhGhSPZUS+rexXQbx3QZiPwkGYN/pYbTaU6iOhESgeWIQwfk+q0HTJCu6wlXHAHGCYg1TzPJUXaMB71DibTCLUGI3EHatMtyRQWNbCK2d68FxZuNvKlwo6VF3TlWhfFmN1G0NZ/TnGVUR0spKHJetN7klK+xgkx5z5v6tno53KMkoEK5N7kE8lg63fBZp6NfEQD1jN1c/nm73mQFVfEayk6CM+OV6UDyqrS3kZWrTTqWJMWkaT9FeRW7R+JRssw72gTT2LzTjy0Errssh28k9koOl947GfCkc7M56Eqtli1d25RDEXJMe0zBQVxWTPVZ6v1hrTGGVvKSNGeZ9qj0qRFeMrpED3NF3JFKpmH7E8Vs/RM4BMQRp2Gt0wuyrHefPnUOVldcw17z/ypRIP0CktPFnuI8dM8ywsPcNI5sCVeyT7izH0OlZrMpU3zwgAV9TJYwxqXfB+KJ4DQT4E/SmtV8GXHTzpJo/89euJX4ryice/GBx8VeVHyR5trxJnYFB18UO5HY8dlqj2Heoy9CrrWI3oANbwQqEOHaxGJUdJa2vlQNlsiPGm2l4rsuAHCrdO8sy4zJd3IjnJmW0ZHoEdM+aOx+D26ZSmuMB7eYyEmmT5EdEJVhrOMVnkRXWKEO4Xz5YyNo/kYqdRZHZ0VGZKxtmHmjyU+VZZJujF5e+DMtwmfcxYtU2ITwnjjUs6V3gHZaXS7SmetBTkKJWfYaVtX8UEsmW+n02Le+Ex1UmePbuIUddLNiU8E2xFJTcFT0+1WKB610RiFCJTS7QzqA+RnZKllL8X8FphS4gsaZeylur6+pf3IloqW6zI2EUPEG29SiYzZyPVaY0I/1msc8BeTxX/UfaHg/RSWaGkaxnzTngdLkuZ0MzXnNVRsg9UpXLSsd2S7RaUsH+Fgp5ac2X7QfRTyfZSfB1UkEqmJe8NFVkhMQWVFY3Hu6MdkmjZ07Gys5iHKhnGvKa0bCzttwnPEa/FvtqXKfq95Zd1Zi/P5oYxLVPpKyG9mduAlEGs9rtyhmpZr1dtgQP1ldVVVi3zX6Ocoa7r54o9p/FYpLLX8UQxK6+ixn5fSScrOVzOtCfbQq1Ns1hndd3O+IIeV/uEcp1Mfo3SyTDnaY6Q4wlpfPw100KyTtTcn9DJRbYxZo+CXS/PwFPLDB21ZlQEeSxC+SZoOfgc/brRLuZCQzibTimbvq9npau5lOxszjItzaX4J8U1ud2V7/fMNP2toekgfzOUcdV+SF5gvbdqP6ZkGFpHffEaTWRexScknW6TjaB0suj7It5WapM4eteRGCHQfJkwglqsA0HKOH9gXrK1kQfUulYRlkxijwnLVq48iP4v2rEnbHxCvfDkOtnDKrJBdF7hS8HaAL+MqwkqGbEjRDGjPehib9VRF0uWIP0Xl3weRKhcGUvVF6K97D75V8GcTqlAP0X8K0LO0NaxSzqfj583O2wrKfmeEv+jrKro+0LHcDVO9mfijPtvZlgZUVVRZL+6ku3EGYcSJWA/jJ8xEN96wPutMx/mtstzjFUdXfbphVa8FrLi2VoGtrL3diX7t7CvdkcRKNZ3YkfKmuB90Vgl1ND3rlf2RYsPQ9cWNhDzHe++IJ3STEtZ/3rmZT4Xag874SfKjudoH+sQo7JXXY+BM69ylVC2URqV/daYP+JGtcp+a7W3/BJf/mvxZZDRcbUC+TepoImVM+H96S+0iiqaWht+x88L7bfi30rlzeMYuH5+5N9Ug7Pm/GQnSjr2pXbepXbepXbez1E77z671M3jGmuYtT9AHOTkqZKYK+ujfdZfHukirBvXRv9u4fHpVpVTJ0et68WUVjzo9WENdCCuGHNf7Qc4PqWTJ4dc2at8GnqwmdjTl2jNNaGk3tuZUyB5JxfSDE+nOlfvTtXHwhM+sJr62bp47hfq4j0tv3Ti5D58esYT5q5GqM9P1Mabtq6T06dDHlajl9P3AA2k1t/xb+H6GmwUOp2kWucvAz5N2sPpbmLdP0+0kzlLp7S0isptwsvaqfeD6snyp6q/SXw2rxkX07mT61vg6Uek9VH9LlXrLq+Ft+Z6dSxl9yA1k8+oOYozJ8+e9FiDueHnvdyvYI2C5glKkjC6e0wnDdYK8Ez4C/AkQLzvfWA/gO12uOfzLI93+eU1+VorA2zW412Ajev8HM1qZs+pszfheo22+hxEJV6btG7nIzwFdCmnRFbrO66neBpDMhleLzGLQGpOKmmqrSE+PZLoDNdJrBx+f1j91jAyxkIRd8FYwDIj/B4xht6yOu8vXgvt8+Y+H9tqhz4x/N3+t3XyGKtfDNBfvtTJu9TJu9TJu9TJu9TJ+9+qk2f6lzp5lzp5/5O75C918i518v75u+QvdfIuu+R/ohgH9DH40B66S528S528S528S528S528S528S528n7hOnvmBSvmXOnmXOnk/IQJwqZN3qZP3z0cALnXyLgjAT4YAfKhS/qVO3qVO3qVO3qVO3qVO3qVO3qVO3v+Whg8PH9LwwBGI+XgG2tUdsmHJv83r5OW72HIsLzzG+OdJWTpouFPhF+WYuK1jRwWGHp/B95c6bpb7KDq2T1kheNas7JiKeiXJrGP7hxImqeGdx5UFWCOcwfXtEraqfW6XfMG8ooB1JEFL7V/C9MOdhm3XKrX3cn+tpIlO4PnndvyfiQscY7QiLSuZSqaqY8i7g8FnXgg+QbWbMNNNMNHTOP6JeokUu7DPYPglzLXwf07EZfQ6eCfwe5mnokoHZzgdKrUIK+1/it2fruygdsIKb5d5qIrbS/xAw1a1eFEeN8kxZrUDt8CblQY7i9mzFROBf4UxIsmSKupHahi1TqsqXq8qjuT8pz9Xz5hTdSZPYPXhUR+SSaTvbM5xjW+K0/PuOi3WQeMsyRVNs53A6MNK9l3ellcuwew04Hs9O82gHfiYAXYenz+V1ZeezEzrncTm9fhp6f5SVmRVbqeld1C4wEUD/3UN/LFa9DYhk30Paz78zRo4+ioNLHtqWZNSpdWmss+zvEqtSGHJM2bNfVoD185oYOeMBrb+xzSwfUYDm2c08LHULVW//WYaOOHonIpqa/ngaVKlu/KrCkmu0et4/nRLQmUbaDW/VOZBNYIumk7l21babYmAMD5S3vtNGuN09FwsgdI+bfE3tOq+ZZ74aORcZQkU9YZK1pJ6JswH7gNgi+Fs1Lxa70inla4V9DVTiZgf1W3QKxknBZ/puMJRtLxam4HWa9Coaua88m9c+PhJub/suA34HugQn46UNzS54pZkk9oXUczTcZTcKtUExCqjC6x/WGeti9kn6INjxPx8frh9MkI+P5lXv6vIgCP5Wr4/l0sli4Hvj0rvcImM/9eRcSv48xPkYH0htlhHuXapFP9zV4o3Kt5Z1VutVIovy8F/d6V4lbVXrRTvleyJqhf3L6sUb/3VSvG/WbujPZ+4vxauc37jdQvjg/mnCHmStKtt2QAj1EngLg9cLX6J2DDQ9Geuh3ypFu9fqsVfqsX/S6rFg81crRZ/vM4ynP8lyDPkGc7YkbqRb0BT1iPAS8izwE8pt3Xxu4X8QvY5tAcNXEdyD9k0Hvm38hu2ib8b0tx9a5QqXF/vRl9tHzPtv8I+fh61Hp+/D/oE8uYjezxsyu3hKH7K0fR6kqNPJCGaFkd460b+nSVFpkmKDe00h5UvFS3xtwNJGbJC0QPrsrc3p1w8M/+dVi3ONEZrI4stje6ug9VmSTqT9NlR1gJZcDFLiAasaJaGjpIYGAcKqG+1v0ONWfYHkLXj5ePE90WrDavrBVKpGySASG+QLilKBPYSO7wTGSuhp0raY9W8icoCyN+HkDCShkqiilSx8vfJ1B4BkoRcNbF3QxIZ3tsqtBJmOqi8OMokUBVKVZwh5mwBT1WZlSrLlGOf05+sflVxm8avvH6fV5lUrMT7KU+YxluS8AZL4BC1nsQSJJ+1IV60WJJsifpinQIXfnPvlSy3T4VEvl9NW8HmqK/CkilWWmoWVVp6phpLMoJVBhJzgfWvJpajSd7v4pXaQeMvWZnXX6z2UbEoxarXrc4M1oYB1nWKvNTpx5jPCxJ6mf7W+wrpeR5F2M7Wg6vAJatwBxoLpJ+qX7XBNWgeSc0XkJov/j6yHkEihx/D6m2sdNPVK4KQVftVGo8q9dVWH9WAo/XhfWoC39ldE5F6kFd/VvEjY0+TqjfiukUrhquZ9rhqMqGpLp1qIAgnX+tr1Wn1PUW+Vo2hcj14xj5W+ZZ24NN+JNUeqPKqOoGh2Lehckb1vUnMP9pzqSKJ8ZUnb5SRPkYP5IQCnz3BxeCgoRqZeI0aOiKVE/r+mdM3VGy4C/cva14JlUjyWKHEbrnqu+szPTIPaOPJ80PJQeacZZCzME6WtR13yZV3z52+4ZLn+0Zjg74FBZdKt3WDq6TWsZ7jQUd2fPlNMuvKJy7w++IJhwnQuFQtme6hqFBkaSgUxn5TfHcYgc2eR5hRfNSF+W0In+UVZKRPVYmYMjJDeG91cka+rw0z3CTXWuVRUBVb6wsncWSctTVIsRqyZGHBO/tcoRV1HNNUECmaB6wSzRlRfKKGqpTtYLVV8a74dAeq9ox6E/cEekaHLfzLiRzU/+VEjiMkTF+rlxM5iuji5USO73AiR4g2A1YMN4LeP+9EDjz5ol1kAkuVdbIxYC78H3Uqhxp7hicAByRPq/uT8v1WqqK52sOu6QSk5RJP7cCqbWdP5ijeuc7RZpX1AP4krDF5npz+kT9zmRZrH+QmzrnST/m8FHv2RJbzvCwUHyJN81O4FB3RvhG9UakfMHc4hwt0OyEqC9plgbZyJqe7SZZ5TNXXRc4ir2bMc3lV+HK9AkTVeB+WbjOoyDpX2Be/l0+PaIoMlsomWvQLZIP4on5C2d1lm0LtVeKK++o+l9djW7cHhZYq+t7WbTiV9c32tJJDBy0jHvoAWZQtq3KWMwoWpf3v8pvCF3it+5UTDEIV+WHb+8B7UOt80h7o/2O7QCJGeWRdq1fBJ7GVI/GnbIk+8Z+h56eKnCzVQSifNiE8puoakF2aZ/Sn5B/q+bL5Pvxcf7GtQjLEK+UmHuvtEyf65SdryKl4Ih/LVfBpzavImjp1MKeF2skgc390aocWaQce61oFvhLhiQT6uchHJ48UuqC7K+ZicEo303os62aZS7aTVBa7PpfaKQIlW0qLiJ08sQN4qkn6o9oPy4vQOs6zlL2fWVjtS53wktc5wLXHugT96rqhskuKrI4831Rr432ZAZ1mUSdsiU/RKPugZFsv6ISHsm3tFnq2nUcHfZt1Bp/M4HNFwxOnc3RrjPKrkyIq/sPff0KHRWgs0nbx5RM6xE9Cn6VWyj7RTkryi6yYjHdIia7hDBVHfFrz3Ckd+SmQxU4MyepTvnNxeoQ68UaqTrF+ZbvQpr3pHL1KCntLnWjpV/JMZX8u+7F//aSOPmc08AkY9dM4gW4D57SVE0+ID2P7607riG0d/1ByJNBORy0i7BUMxc19sJ3GT5WKmfrJKAXeIvP1HTDSf0mGD55CVqmAHlrXb5P142Lauk7bw8CMXkbP07vHFKN4WFm8XE3+ejmiitSPGfSZn66Bp22gZKQ/7SSOUGuTUz30e/R/Syd5hH+SVaCf3QGfsSb/L9bNdzypw7F/2Ekd8PV1s9lrv7Vex9tnfzOd4RX/Dw==</diagram></mxfile>
\ No newline at end of file diff --git a/ma/resources/prototype_schema.pdf b/ma/resources/prototype_schema.pdf Binary files differnew file mode 100755 index 0000000..b89a453 --- /dev/null +++ b/ma/resources/prototype_schema.pdf diff --git a/ma/safety_reset.pdf b/ma/safety_reset.pdf Binary files differindex 6fd2dce..f1871b3 100644..120000 --- a/ma/safety_reset.pdf +++ b/ma/safety_reset.pdf diff --git a/ma/safety_reset.tex b/ma/safety_reset.tex index 97a6f93..4e0e6dd 100644 --- a/ma/safety_reset.tex +++ b/ma/safety_reset.tex @@ -352,7 +352,14 @@ situations where that was not previously economically possible\footnote{ introduction of smart metering\cite{vseaes01} cynically writes that remotely controllable load switches ``lead a new tenant to swiftly register'' with the utility company. This whitepaper completely vanished from their website some time after publication, but the internet archive has a copy. -}. +}. Figure \ref{fig_smgw_schema} shows a schema of the smart metering installation in a typical household. + +\begin{figure} + \centering + \includegraphics{resources/smgw_usage_scenario} + \caption{A typical usage scenario of a smart metering system in a typical home.} + \label{fig_smgw_schema} +\end{figure} To the customer the utility of a smart meter is largely limited to the convenience of being able to read it without going to the basement. In the long term it is said that there will be second-order savings to the customer since @@ -1619,6 +1626,13 @@ realistically be up to $\mathcal O\left(10^3\right)$, which is easily enough for \chapter{Practical implementation} +To validate the practical feasibility of the theoretical concepts we laid out in the previous chapter we decided to +build a prototype of a safety reset controller. In this section we describe the reasoning behind the components of this +prototype and the engineering that went into its firmware. The prototype consists of a smart meter whose application +microcontroller is reset by a prototype reset controller on an external circuit board. We lay out how we extensively +tested all parts of our firmware implementation. We conclude with results of a practical end-to-end experiment +exercising every part of our prototype. + \section{Data collection for channel validation} To design a solid system we needed to parametrize mains frequency variations under normal conditions. To set modulation @@ -2083,8 +2097,6 @@ our MLE's symbol chain detection. High threshold factors lead the algorithm to some degree this can be compensated by our later interpolation step for missing peaks but in the extreme will also break demodulation. In our simulations good values lie in the range from $4.0$ to $5.5$. -% FIXME algo flow chart - Figure \ref{dsss_thf_amplitude_5678} contains plots of demodulator sensitivity like the one in Figure \ref{dsss_gold_nbits_overview}. This time there is one color-coded trace for each threshold factor between $1.5$ and $10.0$ in steps of $0.5$. We can see a clear dependency of demodulation performance from trheshold factor with both very @@ -2159,10 +2171,8 @@ moving the signal band into noisier spectral regions (cf.\ Figure \ref{freq_meas Figure \ref{freq_meas_spectrum} we can see that noise energy is mostly concentrated at lower frequencies, so shifting our signal up in frequency will reduce the amount of noise the decoder sees behind the correlator by shifting the band of interest into a lower-noise spectral region. For a practical implementation chip duration - is limited by physical factors such as the maximum modulation slew rate ($\frac{\text{d}P}{\text{d}t}$), the - maximum Rate-Of-Change-Of-Frequency (ROCOF, $\frac{\text{d}f}{\text{d}t}$) the grid can tolerate and possible - inertial effects limiting response of frequency to load changes at certain load levels. - % FIXME are these inertial effects likely? Ask an expert. + is limited by physical factors such as the maximum modulation slew rate ($\frac{\text{d}P}{\text{d}t}$) and the + maximum Rate-Of-Change-Of-Frequency (ROCOF, $\frac{\text{d}f}{\text{d}t}$) the grid can tolerate. } \label{chip_duration_sensitivity} \end{figure} @@ -2334,13 +2344,21 @@ We based our safety reset demonstrator firmware on the grid frequency sensor fir \ref{sec-ch-sim} to embedded C code. After validating the C translation in extensive simulations we integrated our code with a reed-solomon implementation and a libsodium-based implementation of the cryptographic protocol we designed in sec.\ \ref{sec-crypto}. To reprogram the target MSP430 microcontroller we ported over the low-level bitbang JTAG driver -of mspdebug\footnote{\url{https://github.com/dlbeer/mspdebug}}. +of mspdebug\footnote{\url{https://github.com/dlbeer/mspdebug}}. See Figure \ref{fig_demo_sig_schema} for a schematic +overview of signal processing in our demonstrator. For all computation-heavy high-level modules of our firmware such as the DSSS demodulator or the grid frequency estimator we wrote test fixtures that allow the same code that runs on the microcontroller to be executed on the host for testing. These test fixtures are very simple C programs that load input data from a file or the command line, run the algorithm and print results on standard output. +\begin{figure} + \centering + \includegraphics[width=\textwidth]{resources/prototype_schema} + \caption{The signal processing chain of our demonstrator.} + \label{fig_demo_sig_schema} +\end{figure} + \section{Grid frequency modulation emulation} To emulate a modulated grid frequency signal we superimposed a DSSS-modulated signal at the proper amplitude with @@ -2351,8 +2369,13 @@ compensated for at the transmitter by selecting appropriate modulation parameter the receiver by equalization with a matched filter. \section{Experimental results} + +After extensive simulations and testing of the individual modules of our solution we proceeded to conduct a real-world +experiment. We tried the demonstrator setup with an emulated noisy DSSS signal in real-time. Our experiment went without +any issues and the firmware implementation correctly reset the demonstrator's meter. We were happy to see that our +extensive testing paid off: The demonstrator setup worked on its first try. % TODO add some pictures of the finished demo setup in action -% FIXME +% FIXME maybe add an SER curve here? \section{Lessons learned} @@ -2420,21 +2443,19 @@ from ARM's CMSIS signal processing library. \section{Precise grid characterization} We based our simulations on a linear relationship between generation/consumption power imbalance and grid frequency. -Our literature study suggests that this is an appropriate first-order approximation. %FIXME citation -We kept modulation bandwidth in our simulations inside a \SIrange{1000}{100}{\milli\hertz} frequency band that we reason -is most likely to exibit this linear behavior in practice. At lower frequencies primary control kicks in. With the -frequency delta thresholds specified for primary control systems\cite{entsoe04} this will likely lead to significant -non-linear effects. At higher frequencies grid frequency estimation at the receiver becomes more complex. Higher -frequencies also come close to modes of mechanical oscillation in generators (usually at \SI{5}{\hertz} and -above\cite{crastan03}). - -Some limited analysis of the above concerns can be done through established dynamic grid simulation -models\cite{semerow01,entsoe05}. Presumably out of safety concerns these models are only available under non-disclosure -agreements. Integrating even just NDA-encumbered results stemming from such a model in an open-source publication such as -this one poses a logistical challenge which is why we decided to leave this topic for a separate future work. -After detailed model simulation we ultimately aim to validate our results experimentally. Assuming linear grid behavior -even under very small disturbances a small-scale experiment is an option. Such a small-scale experiment would require -very long integration times. +Our literature study suggests that this is an appropriate first-order approximation\cite{crastan03}. We kept modulation +bandwidth in our simulations inside a \SIrange{1000}{100}{\milli\hertz} frequency band that we reason is most likely to +exibit this linear behavior in practice. At lower frequencies primary control kicks in. With the frequency delta +thresholds specified for primary control systems\cite{entsoe04} this will likely lead to significant non-linear effects. +At higher frequencies grid frequency estimation at the receiver becomes more complex. Higher frequencies also come +close to modes of mechanical oscillation in generators (usually at \SI{5}{\hertz} and above\cite{crastan03}). + +An analysis of the above concerns can be performed using dynamic grid simulation models\cite{semerow01,entsoe05}. +Presumably out of safety concerns these models are only available under non-disclosure agreements. Integrating +NDA-encumbered results stemming from such a model in an open-source publication such as this one poses a logistical +challenge which is why we decided to leave this topic for a separate future work. After detailed model simulation we +ultimately aim to validate our results experimentally. Assuming linear grid behavior even under very small disturbances +a small-scale experiment is an option. Such a small-scale experiment would require very long integration times. Given a frequency characteristic of \SI{30}{\giga\watt\per\hertz} a stimulus of \SI{10}{\kilo\watt} yields $\Delta f = \SI{0.33}{\micro\hertz}$. At an estimated \SI{20}{\milli\hertz} of RMS noise over a bandwidth of interest this results @@ -2462,10 +2483,9 @@ be the standardization of the backend operation including key management, coörd Since the proposed system adds significant cost and development overhead at no immediate benefit to either consumer or utility company it is unlikely that it would be adopted voluntarily. Market forces limit what long-term planning utility companies can do. An advanced mitigation such as this one might be out of their reach on their own and might require -regulatory intervention to be implemented. To regulatory authorities a system such as this one provides a powerful -primitive to guard against attacks. Due to the low-level approach our system might allow a regulatory authority to -restore meters to a safe state without the need of fine-grained control of implementation details such as application -network protocols. +regulatory intervention to be implemented. To regulatory authorities a system such as this one provides a primitive to +guard against attacks. Due to the low-level approach our system might allow a regulatory authority to restore meters to +a safe state without the need of fine-grained control of implementation details such as application network protocols. A regulatory authority might specify that all smart meters must use a standardized reset controller that on command resets to a minimal firmware image that disables external communication, continues basic billing functions and enables @@ -2478,17 +2498,12 @@ regulatory authority as the \emph{reset authority} they would likely be able to managing root keys for other government systems to also manage safety reset keys. Availability and security requirements of safety reset keys do not differ significantly from those for other types of root keys. -\section{Practical implementation} - %FIXME - - \section{Zones of trust} -In our design, we opted for a safety reset controller - % FIXME is "safety reset" the proper name here? We need some sort of branding, but is this here really about "safety"? -in form of a separate micocontroller entirely separate from whatever application microcontroller the smart meter design -is already using. This design nicely separates the meter into an untrusted application (the core microcontroller) and -the trusted reset controller. Since the interface between the two is simple and logically one-way, it can be validated -to a high standard of security. + +In our design, we opted for a safety reset controller in form of a separate micocontroller entirely separate from +whatever application microcontroller the smart meter design is already using. This design nicely separates the meter +into an untrusted application (the core microcontroller) and the trusted reset controller. Since the interface between +the two is simple and logically one-way, it can be validated to a high standard of security. Despite these security benefits, the cost of such a separate hardware device might prove high in a mass-market rollout. In this case, one might attempt to integrate the reset controller into the core microcontroller in some way. Primarily, @@ -2503,11 +2518,11 @@ discrete microcontroller for the reset controller. The more likely approach to reducing cost overhead of the reset controller would be to employ virtualization technologies such as ARM's TrustZone in order to incorporate the reset controller firmware into the application firmware -on the same chip without compromising the reset controller's security or disturbing the application firmware's +on the same processor core without compromising the reset controller's security or disturbing the application firmware's operation. TrustZone is a virtualization technology that provides a hardware-assisted privileged execution domain on at least one -of the microcontrollers cores. In traditional virtualization setups a privileged hypervisor is managing several +of the microcontroller's cores. In traditional virtualization setups a privileged hypervisor is managing several unprivileged applications sharing resources between them. Separation between applications in this setup is longitudinal between adjacent virtual machines. Two applications would both be running in unprivileged mode sharing the same cpu and the hypervisor would merely schedule them, configure hardware resource access and coördinate communication. This @@ -2526,7 +2541,7 @@ microcontroller providing this type of virtualization on the one hand and the co virtualization on the other hand. Virtualization systems such as TrustZone are still orders of magnitude more complex to correctly configure than it is to simply use separate hardware and secure the interfaces in between. -\chapter{Alternative use of grid frequency modulation} +\chapter{Alternative uses of grid frequency modulation} % FIXME random beacons? funky consensus protocols? proof of knowledge/cryptographic notary service? \chapter{Conclusion} |