summaryrefslogtreecommitdiff
path: root/lab-windows/dsss_experiments.ipynb
diff options
context:
space:
mode:
authorjaseg <git-bigdata-wsl-arch@jaseg.de>2020-02-18 11:48:08 +0000
committerjaseg <git-bigdata-wsl-arch@jaseg.de>2020-02-18 11:48:08 +0000
commitd32422d11d38f6f5baaac9ac9204db79ef8bb11f (patch)
treeaa636aa11513463d119b5ad7ce4303b6ec69ba15 /lab-windows/dsss_experiments.ipynb
parent9a833efed9b94f6ac8b16a09b5774496dc2bf6aa (diff)
downloadmaster-thesis-d32422d11d38f6f5baaac9ac9204db79ef8bb11f.tar.gz
master-thesis-d32422d11d38f6f5baaac9ac9204db79ef8bb11f.tar.bz2
master-thesis-d32422d11d38f6f5baaac9ac9204db79ef8bb11f.zip
SER calculation: Fix offset problem
Diffstat (limited to 'lab-windows/dsss_experiments.ipynb')
-rw-r--r--lab-windows/dsss_experiments.ipynb177
1 files changed, 68 insertions, 109 deletions
diff --git a/lab-windows/dsss_experiments.ipynb b/lab-windows/dsss_experiments.ipynb
index f2bbc0b..ee35464 100644
--- a/lab-windows/dsss_experiments.ipynb
+++ b/lab-windows/dsss_experiments.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -21,7 +21,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
- "execution_count": 105,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -39,7 +39,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -48,7 +48,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -75,13 +75,13 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "01394154cc52483e9d4483f1178d94c3",
+ "model_id": "5081f9508a894fcf810e2d9c92c24a3e",
"version_major": 2,
"version_minor": 0
},
@@ -102,10 +102,10 @@
{
"data": {
"text/plain": [
- "<matplotlib.image.AxesImage at 0x7fcfd7369250>"
+ "<matplotlib.image.AxesImage at 0x7ff8d9616610>"
]
},
- "execution_count": 5,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -117,7 +117,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -133,7 +133,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
@@ -157,7 +157,7 @@
" -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1])"
]
},
- "execution_count": 7,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,7 +178,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -192,7 +192,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -209,7 +209,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "182fd5ac86e74ad299a67e5f1d0b2b2b",
+ "model_id": "ec8de5680ba541938b7d1843b841c327",
"version_major": 2,
"version_minor": 0
},
@@ -230,10 +230,10 @@
{
"data": {
"text/plain": [
- "<matplotlib.image.AxesImage at 0x7fcfd6c90070>"
+ "<matplotlib.image.AxesImage at 0x7ff8d955afa0>"
]
},
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -260,13 +260,13 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4cb2661eebb84478b06d285166ec13bc",
+ "model_id": "bb32b5050ee14ddc8eb64697a8eb774b",
"version_major": 2,
"version_minor": 0
},
@@ -288,10 +288,10 @@
{
"data": {
"text/plain": [
- "<matplotlib.image.AxesImage at 0x7fcfd6c6cfa0>"
+ "<matplotlib.image.AxesImage at 0x7ff8d8eb9e20>"
]
},
- "execution_count": 10,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -317,7 +317,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
@@ -330,7 +330,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a2e2f747193b478bbfa792a0995ad4ed",
+ "model_id": "48b3ae259e8046a5b90a82c4e80bab2e",
"version_major": 2,
"version_minor": 0
},
@@ -352,10 +352,10 @@
{
"data": {
"text/plain": [
- "(2.0, 1.0234353995297893)"
+ "(2.0, 1.0121324810255907)"
]
},
- "execution_count": 11,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -399,7 +399,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -419,7 +419,7 @@
},
{
"cell_type": "code",
- "execution_count": 145,
+ "execution_count": 27,
"metadata": {},
"outputs": [
{
@@ -431,17 +431,9 @@
]
},
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "<ipython-input-145-babcf8a4e867>:33: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
- " fig, ((ax1, ax3), (ax2, ax4)) = plt.subplots(2, 2, figsize=(16, 9))\n"
- ]
- },
- {
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "10aa67d294304f2ba26c8e6d5555d5e6",
+ "model_id": "73f4caf6a80f448183c41b711412a471",
"version_major": 2,
"version_minor": 0
},
@@ -455,10 +447,10 @@
{
"data": {
"text/plain": [
- "(0.002, 0.014074279)"
+ "(0.0020000000000000005, 0.014544699)"
]
},
- "execution_count": 145,
+ "execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
@@ -470,7 +462,7 @@
"\n",
"#test_data = np.random.randint(0, 2, 100)\n",
"#test_data = np.array([0, 1, 0, 0, 1, 1, 1, 0])\n",
- "test_data = np.random.RandomState(seed=0).randint(0, 2 * (2**nbits), 64)\n",
+ "test_data = np.random.RandomState(seed=0xcbb3b8cf).randint(0, 2 * (2**nbits), 128)\n",
"#test_data = np.random.RandomState(seed=0).randint(0, 8, 64)\n",
"#test_data = np.array(list(range(8)) * 8)\n",
"#test_data = np.array([0, 1] * 32)\n",
@@ -542,13 +534,13 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c08b2a1dbdef429eb22b598bd3dc0146",
+ "model_id": "9fa8fa6a6837412da95630c634a12e21",
"version_major": 2,
"version_minor": 0
},
@@ -569,10 +561,10 @@
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7fcfd1635700>]"
+ "[<matplotlib.lines.Line2D at 0x7ff8ad6f3b50>]"
]
},
- "execution_count": 14,
+ "execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
@@ -592,13 +584,13 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "20117316e02548a99386c39e45e71ef1",
+ "model_id": "854dec05e45340ae91cf271b2facd7ed",
"version_major": 2,
"version_minor": 0
},
@@ -623,7 +615,7 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-15-f158dfc14cca>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0msosh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'highpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msosl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lowpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mcor2_pe_flt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfiltfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m<ipython-input-24-f158dfc14cca>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0msosh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'highpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msosl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbutter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lowpass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sos'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecimation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mcor2_pe_flt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mcor2_pe_flt2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msosfiltfilt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msosl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcor2_pe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'cor2_pe' is not defined"
]
}
@@ -650,21 +642,13 @@
},
{
"cell_type": "code",
- "execution_count": 57,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "<ipython-input-57-3e7dc7c98d30>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
- " fig, ax = plt.subplots()\n"
- ]
- },
- {
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "25fe274dea83415491fd7f86d38188d7",
+ "model_id": "b3f68635d3ad4863b990c0b6e742840b",
"version_major": 2,
"version_minor": 0
},
@@ -678,10 +662,10 @@
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7fcf84cb4a60>]"
+ "[<matplotlib.lines.Line2D at 0x7ff8a9b7a820>]"
]
},
- "execution_count": 57,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -695,21 +679,13 @@
},
{
"cell_type": "code",
- "execution_count": 146,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "<ipython-input-146-badd40342f73>:11: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
- " fig, (ax1, ax3) = plt.subplots(2, figsize=(12, 5))\n"
- ]
- },
- {
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "509bf67d93b74741b48bca58529c4b9d",
+ "model_id": "e6e78aec5f92465fbda1d231f7123196",
"version_major": 2,
"version_minor": 0
},
@@ -724,22 +700,30 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "cor_an (65, 40949)\n",
- "cwt_res (65, 40949)\n",
- "th (65, 40949)\n",
+ "cor_an (65, 81269)\n",
+ "cwt_res (65, 81269)\n",
+ "th (65, 81269)\n",
"[((65,), (65,)), ((65,), (65,)), ((65,), (65,)), ((65,), (65,)), ((65,), (65,))]\n",
- "peaks: 982\n",
- "avg_peak 1.6673786030736735\n",
- "skipped 2 symbols at 30238.5\n",
+ "peaks: 1852\n",
+ "avg_peak 1.6610203317347632\n",
+ "skipped 3 symbols at 42209.0\n",
"decoding [ref|dec]:\n",
- " 44| 44 ✔ 47| 47 ✔ 117|117 ✔ 64| 64 ✔ 67| 67 ✔ 123|123 ✔ 67| 67 ✔ 103|103 ✔ \n",
- " 9| 9 ✔ 83| 83 ✔ 21| 21 ✔ 114|114 ✔ 36| 36 ✔ 87| 87 ✔ 70| 70 ✔ 88| 88 ✔ \n",
- " 88| 88 ✔ 12| 12 ✔ 58| 58 ✔ 65| 65 ✔ 102|102 ✔ 39| 39 ✔ 87| 87 ✔ 46| 46 ✔ \n",
- " 88| 88 ✔ 81| 81 ✔ 37| 37 ✔ 25| 25 ✔ 77| 77 ✔ 72| 72 ✔ 9| 9 ✔ 20| 20 ✔ \n",
- "115|115 ✔ 80| 80 ✔ 115|115 ✔ 69| 69 ✔ 126|126 ✔ 79| 79 ✔ 47| 47 ✔ 64| 64 ✔ \n",
- " 82| 82 ✔ 99| 99 ✔ 88| 88 ✔ 49| 49 ✔ 115|115 ✔ 29| 29 ✔ 19| -1 19| 19 ✔ \n",
- " 14| 14 ✔ 39| 39 ✔ 32| 32 ✔ 65| 64 ✘ 9| 9 ✔ 57| 57 ✔ 127|127 ✔ 32| 32 ✔ \n",
- " 31| 31 ✔ 74| 74 ✔ 116|116 ✔ 23| 23 ✔ 35| 35 ✔ 126|126 ✔ 75| 75 ✔ 114| 26 ✘ \n",
+ " 10| 10 ✔ 69| 69 ✔ 124|124 ✔ 102|102 ✔ 2| 2 ✔ 3| 3 ✔ 78| 78 ✔ 29| 29 ✔ \n",
+ "122|123 ✘ 73| 73 ✔ 98| 98 ✔ 34| 34 ✔ -1| -1 ✔ 97| 97 ✔ 7| 7 ✔ 97| 97 ✔ \n",
+ " 86| 86 ✔ 120|120 ✔ 95| 95 ✔ 90| 90 ✔ 49| 49 ✔ 89| 89 ✔ 83| 83 ✔ 19| 19 ✔ \n",
+ " 84| 84 ✔ 117|117 ✔ 92| 92 ✔ 119|119 ✔ 16| 16 ✔ 45| 45 ✔ 23| 23 ✔ 16| 16 ✔ \n",
+ "111|111 ✔ 9| 9 ✔ 89| 89 ✔ 18| 18 ✔ 36| 36 ✔ 2| 2 ✔ 115|115 ✔ 40| 40 ✔ \n",
+ "100|100 ✔ 105|105 ✔ 93| 93 ✔ 85| 85 ✔ 107|107 ✔ 90| 90 ✔ 62| 62 ✔ 116|116 ✔ \n",
+ " 42| 42 ✔ 123|123 ✔ 40| 40 ✔ -1| -1 ✔ 77| 77 ✔ 40| 40 ✔ 57| 57 ✔ 110|110 ✔ \n",
+ " 29| 29 ✔ 94| 94 ✔ 1| 1 ✔ 29| 29 ✔ 71| 71 ✔ 119|119 ✔ 15| 15 ✔ 115|115 ✔ \n",
+ "120| -1 70| -1 50| 50 ✔ 71| 71 ✔ 50| 50 ✔ 61| 61 ✔ 38| 38 ✔ 4| 4 ✔ \n",
+ " 3| 3 ✔ 124|124 ✔ 95| 95 ✔ 27| 27 ✔ 48| 48 ✔ 116|116 ✔ 3| 3 ✔ 63| 63 ✔ \n",
+ " 19| 19 ✔ 79| 79 ✔ 2| 2 ✔ 43| 43 ✔ 92| 92 ✔ 8| 8 ✔ 65| 65 ✔ 35| 35 ✔ \n",
+ " 30| 30 ✔ 73| 73 ✔ 73| 73 ✔ 38| 38 ✔ 58| 58 ✔ 49| 49 ✔ 45| 45 ✔ 58| 58 ✔ \n",
+ " 46| 46 ✔ 116|116 ✔ 101|101 ✔ 5| 5 ✔ 78| 78 ✔ 126|126 ✔ 105| 76 ✘ 108|108 ✔ \n",
+ " 59| 59 ✔ 46| 46 ✔ 27| 27 ✔ 14| 14 ✔ 57| 57 ✔ 81| 81 ✔ 3| 3 ✔ 9| 9 ✔ \n",
+ "126|126 ✔ 18| 55 ✘ 76| 76 ✔ 101|101 ✔ 124|124 ✔ 4| 4 ✔ 3| 3 ✔ 102|102 ✔ \n",
+ " 79| 79 ✔ 121|121 ✔ 103|103 ✔ 92| 92 ✔ 30| 30 ✔ 4| 4 ✔ 103|103 ✔ 59| 58 ✘ \n",
"Symbol error rate e=0.046875\n",
"maximum bitrate r=321.6796875 b/h\n"
]
@@ -896,34 +880,9 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "987be038c1b34e6e9509f7f224bbb620",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f8fcb61c850>]"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"fig, axs = plt.subplots(2, 1, figsize=(9, 7))\n",
"fig.tight_layout()\n",