summaryrefslogtreecommitdiff
path: root/lab-windows/dsss_experiments-ber.ipynb
diff options
context:
space:
mode:
authorjaseg <git-bigdata-wsl-arch@jaseg.de>2020-02-20 17:18:39 +0000
committerjaseg <git-bigdata-wsl-arch@jaseg.de>2020-02-20 17:18:39 +0000
commit809d6eeddc1f9f822a11d946245827be74eae42c (patch)
tree887028fce2e184b6c93e1c0631b27427c51210e6 /lab-windows/dsss_experiments-ber.ipynb
parent4eb0fab200969044221d8b93680371c4e3908076 (diff)
downloadmaster-thesis-809d6eeddc1f9f822a11d946245827be74eae42c.tar.gz
master-thesis-809d6eeddc1f9f822a11d946245827be74eae42c.tar.bz2
master-thesis-809d6eeddc1f9f822a11d946245827be74eae42c.zip
Add some graphs, add frequency spectra comparison
compare between commercial measurements from Dr. Gobmaier GmbH and ours. Turns out we agree!
Diffstat (limited to 'lab-windows/dsss_experiments-ber.ipynb')
-rw-r--r--lab-windows/dsss_experiments-ber.ipynb225
1 files changed, 199 insertions, 26 deletions
diff --git a/lab-windows/dsss_experiments-ber.ipynb b/lab-windows/dsss_experiments-ber.ipynb
index f490f36..d4a2992 100644
--- a/lab-windows/dsss_experiments-ber.ipynb
+++ b/lab-windows/dsss_experiments-ber.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
@@ -73,7 +73,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@@ -104,7 +104,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 40,
"metadata": {},
"outputs": [
{
@@ -124,12 +124,12 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
- "def generate_test_signal(duration, nbits=6, signal_amplitude=2.0e-3, decimation=10, seed=0):\n",
- " test_data = np.random.RandomState(seed=seed).randint(0, 2 * (2**nbits), duration)\n",
+ "def generate_test_signal(duration, nbits=6, signal_amplitude=2.0e-3, decimation=10, seed=0, data=None):\n",
+ " test_data = np.random.RandomState(seed=seed).randint(0, 2 * (2**nbits), duration) if data is None else data\n",
" \n",
" signal = np.repeat(modulate(test_data, nbits) * 2.0 - 1, decimation) * signal_amplitude\n",
" noise = np.resize(mains_noise, len(signal))\n",
@@ -139,7 +139,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@@ -153,13 +153,21 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 43,
"metadata": {},
"outputs": [
{
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "<ipython-input-42-882fdfbdc9fa>:4: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
+ " fig, ax = plt.subplots()\n"
+ ]
+ },
+ {
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ac41374377284feaa0d8dc20bcb4a341",
+ "model_id": "cddadc4204f54789905875fcfb8e4126",
"version_major": 2,
"version_minor": 0
},
@@ -177,7 +185,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -186,7 +194,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
@@ -366,13 +374,21 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 217,
"metadata": {},
"outputs": [
{
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "<ipython-input-217-c761a61291a7>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
+ " fig, ax = plt.subplots(figsize=(12, 9))\n"
+ ]
+ },
+ {
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b4952032e6ed4d62b23ddf7889a0efb9",
+ "model_id": "42da8a07c0e241f2b1d0f3358e68935b",
"version_major": 2,
"version_minor": 0
},
@@ -382,19 +398,57 @@
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7efd98cd17f0>]"
+ ]
+ },
+ "execution_count": 217,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(12, 9))\n",
"\n",
- "params = dict(\n",
- " nbits=8,\n",
- " signal_amplitude=0.00015,\n",
- " decimation=10,\n",
- " threshold_factor=6.0,\n",
- " power_avg_width=2.5,\n",
- " max_lookahead=6.5)\n",
+ "decimation = 100\n",
+ "extra_dec = 10\n",
+ "nbits = 5\n",
+ "signal_amplitude=3e-3,\n",
+ "\n",
+ "seed = 42\n",
+ "\n",
+ "test_data, signal = generate_test_signal(duration, nbits, signal_amplitude, decimation, seed, data=np.array([4,5,6,7] * 8))\n",
+ "\n",
+ "#sosh = sig.butter(6, 1/(2**nbits), btype='highpass', output='sos', fs=decimation)\n",
+ "#sosl = sig.butter(6, 1.0, btype='lowpass', output='sos', fs=decimation)\n",
+ "#filtered = sig.sosfilt(sosh, sig.sosfilt(sosl, signal))\n",
+ "#filtered = sig.sosfilt(sosh, signal)\n",
+ "\n",
+ "cor_an1 = correlate(signal, nbits=nbits, decimation=decimation)\n",
+ "#cor_an2 = correlate(filtered, nbits=nbits, decimation=decimation)\n",
+ "#cor_an2 = correlate(sig.decimate(signal, 9), nbits=nbits, decimation=decimation//9)\n",
+ "cor_an2 = correlate(sig.decimate(signal, extra_dec), nbits=nbits, decimation=int(round(decimation/extra_dec)))\n",
+ "#ax.plot(cor_an[2])\n",
+ "#ax.matshow(sig.cwt(cor_an[2], sig.ricker, np.arange(1, 64)), aspect='auto')\n",
+ "cwt_ed1 = sig.cwt(cor_an1[2], sig.ricker, np.arange(1, 130))\n",
+ "cwt_ed2 = sig.cwt(cor_an2[2], sig.ricker, np.arange(1, 130))\n",
+ "#for f in [0.73, 1.0]:\n",
+ "# ax.plot(cwt_ed[int(round(f * decimation))], label=f'{f}')\n",
+ "\n",
+ "#ax.plot(signal)\n",
+ "#ax.twiny().plot(sig.decimate(signal, 9), color='orange')\n",
+ "#ax.twiny().plot(sig.decimate(signal, 10), color='orange')\n",
+ "\n",
+ "#ax.matshow(cwt_ed2, aspect='auto')\n",
+ "ax.plot(cwt_ed1[int(round(0.73 * decimation))], label=f'unfiltered')\n",
+ "ax.twinx().twiny().plot(cwt_ed2[int(round(0.73 * decimation / extra_dec))], label=f'filtered', color='orange')\n",
"\n",
+ "#ax.legend()\n",
+ "#ax.matshow(cor_an[2:4], aspect='auto')\n",
+ "#ser, br = run_ser_test(**params, sample_duration=100, print=print, seed=seed, ax=ax) #, debug_range=(16100, 16700))\n",
"#seed = 0xcbb3b8cf\n",
"#for seed in range(10):\n",
"# ser, br = run_ser_test(**params, sample_duration=32, print=print, seed=seed) #, debug_range=(16100, 16700))\n",
@@ -612,21 +666,21 @@
},
{
"cell_type": "code",
- "execution_count": 103,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "<ipython-input-103-3e101b35c97a>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
+ "<ipython-input-36-8e813d331cd8>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" fig, ((ax, cbar_ax), (intercept_ax, empty)) = plt.subplots(2, 2, figsize=(12, 9), gridspec_kw={'width_ratios': [1, 0.05]})\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "84e1acbb31914f5f8b3a031654fd7733",
+ "model_id": "c05f590a7c0040628c5c5d4032bb7c8e",
"version_major": 2,
"version_minor": 0
},
@@ -805,7 +859,7 @@
" std = data[:,1]\n",
" \n",
" ax.set_xlim([min(x), max(x)])\n",
- " l = ax.plot(x, y, label='SER @ a=0.5', color='orange')\n",
+ " l = ax.plot(x, y, label='Amplitude at SER=0.5', color='orange')\n",
" \n",
" x, y, std = zip(*[ (le_x, le_y, le_std) for le_x, le_y, le_std in zip(x, y, std) if le_y is not None ])\n",
" y, std = np.array(y), np.array(std)\n",
@@ -815,6 +869,7 @@
" ax.fill_between([-1, min(ser_valid)], 0, 1, facecolor='red', alpha=0.2, transform=trans, zorder=1)\n",
" ax.fill_between([max(ser_valid), max(ser_valid)*10], 0, 1, facecolor='red', alpha=0.2, transform=trans)\n",
" ax.set_ylim([min(y)*0.9, max(y)*1.1])\n",
+ " ax.grid()\n",
" return l\n",
"\n",
"l1 = plot_intercepts(intercept_ax)\n",
@@ -835,6 +890,124 @@
"source": [
"#fig.savefig('dsss_prototype_symbol_error_rate_5-8_bit.svg')"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "<ipython-input-35-cafaa6062c72>:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
+ " fig, ((ax, cbar_ax), (intercept_ax, empty)) = plt.subplots(2, 2, figsize=(12, 9), gridspec_kw={'width_ratios': [1, 0.05]})\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "fa93fb31355840148f941dab8b60f51c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "<ipython-input-35-cafaa6062c72>:16: RuntimeWarning: divide by zero encountered in log10\n",
+ " cm_func = lambda x: cmap(np.log10(x - min(decimations)) / (np.log10(max(decimations)) - np.log10(min(decimations))))\n"
+ ]
+ }
+ ],
+ "source": [
+ "fig, ((ax, cbar_ax), (intercept_ax, empty)) = plt.subplots(2, 2, figsize=(12, 9), gridspec_kw={'width_ratios': [1, 0.05]})\n",
+ "empty.axis('off')\n",
+ "#fig.tight_layout()\n",
+ "\n",
+ "results = []\n",
+ "for fn in [\n",
+ " '/mnt/c/Users/jaseg/shared/dsss_experiments_res-2020-02-20-14-10-13.json',\n",
+ " '/mnt/c/Users/jaseg/shared/dsss_experiments_res-2020-02-20-13-21-57.json',\n",
+ " '/mnt/c/Users/jaseg/shared/dsss_experiments_res-2020-02-20-13-23-47.json',\n",
+ "]:\n",
+ " with open(fn, 'r') as f:\n",
+ " results += json.load(f)\n",
+ "\n",
+ "decimations = [decimation for (_nbits, thf, _reps, _points, _duration, decimation), series in results]\n",
+ "cmap = matplotlib.cm.viridis\n",
+ "cm_func = lambda x: cmap(np.log10(x - min(decimations)) / (np.log10(max(decimations)) - np.log10(min(decimations))))\n",
+ "\n",
+ "decimation_sers = {}\n",
+ "for (nbits, thf, reps, points, duration, decimation), series in results:\n",
+ " data = [ [ mean for mean, _std, _msg in reps if mean is not None ] for _amp, reps in series ]\n",
+ " amps = [ amp for amp, _reps in series ]\n",
+ " sers = np.array([ np.mean(values) for values in data ])\n",
+ " stds = np.array([ np.std(values) for values in data ])\n",
+ " decimation_sers[decimation] = list(zip(amps, sers, stds))\n",
+ " \n",
+ " l, = ax.plot(amps, np.clip(sers, 0, 1), label=f'decimation={decimation}', color=cm_func(decimation))\n",
+ " ax.fill_between(amps, np.clip(sers + stds, 0, 1), np.clip(sers - stds, 0, 1), facecolor=l.get_color(), alpha=0.2)\n",
+ " ax.axhline(0.5, color='gray', ls=(0, (3, 4)), lw=0.8)\n",
+ "ax.grid()\n",
+ "ax.set_xlabel('Amplitude in mHz')\n",
+ "ax.set_ylabel('Symbol error rate')\n",
+ "\n",
+ "norm = matplotlib.colors.Normalize(vmin=np.log10(min(decimations)), vmax=np.log10(max(decimations)))\n",
+ "cb1 = matplotlib.colorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm, orientation='vertical', label=\"Decimation\", ticks=[np.log10(d) for d in decimations])\n",
+ "cb1.ax.set_yticklabels([f'{d:.1f}' for d in decimations])\n",
+ "\n",
+ "def plot_intercepts(ax, SER_TH = 0.5):\n",
+ " intercepts = {}\n",
+ " for dec, sers in decimation_sers.items():\n",
+ " last_ser, last_amp, last_std = 0, 0, 0\n",
+ " for amp, ser, std in sorted(sers):\n",
+ " if last_ser > SER_TH and ser < SER_TH:\n",
+ " icp = last_amp + (SER_TH - last_ser) / (ser - last_ser) * (amp - last_amp)\n",
+ " ic_std = abs(last_amp - amp) / 2# np.sqrt(np.mean(last_std**2 + std**2))\n",
+ " intercepts[dec] = (icp, ic_std)\n",
+ " break\n",
+ " last_amp, last_ser = amp, ser\n",
+ " else:\n",
+ " intercepts[dec] = None, None\n",
+ " \n",
+ " ser_valid = [dec for dec, (ser, _std) in intercepts.items() if ser is not None]\n",
+ " #ax.axvline(min(ser_valid), color='red')\n",
+ " #ax.axvline(max(ser_valid), color='red')\n",
+ " \n",
+ " x = sorted(intercepts.keys())\n",
+ " data = np.array([ intercepts[dec] for dec in x ])\n",
+ " y = data[:,0]\n",
+ " std = data[:,1]\n",
+ " \n",
+ " ax.set_xlim([min(x), max(x)])\n",
+ " l = ax.plot(x, y, label='Amplitude at SER=0.5', color='orange')\n",
+ " ax.legend(loc=3)\n",
+ " ax.grid()\n",
+ " \n",
+ " x, y, std = zip(*[ (le_x, le_y, le_std) for le_x, le_y, le_std in zip(x, y, std) if le_y is not None ])\n",
+ " y, std = np.array(y), np.array(std)\n",
+ " ax.fill_between(x, y-std, y+std, color=l[0].get_color(), alpha=0.3)\n",
+ " \n",
+ " trans = matplotlib.transforms.blended_transform_factory(ax.transData, ax.transAxes)\n",
+ " ax.fill_between([-1, min(ser_valid)], 0, 1, facecolor='red', alpha=0.2, transform=trans, zorder=1)\n",
+ " ax.fill_between([max(ser_valid), max(ser_valid)*10], 0, 1, facecolor='red', alpha=0.2, transform=trans)\n",
+ " ax.set_ylim([min(y)*0.9, max(y)*1.1])\n",
+ " ax.set_xscale('log')\n",
+ " ax.xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, _: '{:g}'.format(x)))\n",
+ " ax.set_xticks([1, 2, 5, 10, 20, 50])\n",
+ " ax.set_xlim([1, 60])\n",
+ " return l\n",
+ "\n",
+ "l1 = plot_intercepts(intercept_ax)\n"
+ ]
}
],
"metadata": {