summaryrefslogtreecommitdiff
path: root/lab-windows/Phase Measurement Prototype.ipynb
diff options
context:
space:
mode:
authorjaseg <git-bigdata-wsl-arch@jaseg.de>2020-04-29 18:02:57 +0200
committerjaseg <git-bigdata-wsl-arch@jaseg.de>2020-04-29 18:02:57 +0200
commit76c12726e85d0bb25d7f015ee6e515ad7084d36d (patch)
tree5c7afedd107d7ad1751b325df59faa61feaf7281 /lab-windows/Phase Measurement Prototype.ipynb
parent3dd578980020ebf01cf97b0b34ddb8bf61126666 (diff)
downloadmaster-thesis-76c12726e85d0bb25d7f015ee6e515ad7084d36d.tar.gz
master-thesis-76c12726e85d0bb25d7f015ee6e515ad7084d36d.tar.bz2
master-thesis-76c12726e85d0bb25d7f015ee6e515ad7084d36d.zip
MSP430 reflash working
Diffstat (limited to 'lab-windows/Phase Measurement Prototype.ipynb')
-rw-r--r--lab-windows/Phase Measurement Prototype.ipynb372
1 files changed, 0 insertions, 372 deletions
diff --git a/lab-windows/Phase Measurement Prototype.ipynb b/lab-windows/Phase Measurement Prototype.ipynb
deleted file mode 100644
index 557acea..0000000
--- a/lab-windows/Phase Measurement Prototype.ipynb
+++ /dev/null
@@ -1,372 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import math\n",
- "import struct\n",
- "\n",
- "import numpy as np\n",
- "from scipy import signal, optimize\n",
- "from matplotlib import pyplot as plt\n",
- "\n",
- "import rocof_test_data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib widget"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "fs = 1000 # Hz\n",
- "ff = 50 # Hz\n",
- "duration = 60 # seconds\n",
- "# test_data = rocof_test_data.sample_waveform(rocof_test_data.test_close_interharmonics_and_flicker(),\n",
- "# duration=20,\n",
- "# sampling_rate=fs,\n",
- "# frequency=ff)[0]\n",
- "# test_data = rocof_test_data.sample_waveform(rocof_test_data.gen_noise(fmin=10, amplitude=1),\n",
- "# duration=20,\n",
- "# sampling_rate=fs,\n",
- "# frequency=ff)[0]\n",
- "\n",
- "\n",
- "#gen = rocof_test_data.gen_noise(fmin=10, amplitude=1)\n",
- "# gen = rocof_test_data.gen_noise(fmin=60, amplitude=0.2)\n",
- "# gen = rocof_test_data.test_harmonics()\n",
- "# gen = rocof_test_data.gen_interharmonic(*rocof_test_data.test_interharmonics)\n",
- "# gen = rocof_test_data.test_amplitude_steps()\n",
- "# gen = rocof_test_data.test_amplitude_and_phase_steps()\n",
- "test_data = []\n",
- "test_labels = [ fun.__name__.replace('test_', '') for fun in rocof_test_data.all_tests ]\n",
- "for gen in rocof_test_data.all_tests:\n",
- " test_data.append(rocof_test_data.sample_waveform(gen(),\n",
- " duration=duration,\n",
- " sampling_rate=fs,\n",
- " frequency=ff)[0])\n",
- "# d = 10 # seconds\n",
- "# test_data = np.sin(2*np.pi * ff * np.linspace(0, d, int(d*fs)))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "spr_fmt = f'{fs}Hz' if fs<1000 else f'{fs/1e3:f}'.rstrip('.0') + 'kHz'\n",
- "for label, data in zip(test_labels, test_data):\n",
- " with open(f'rocof_test_data/rocof_test_{label}_{spr_fmt}.bin', 'wb') as f:\n",
- " for sample in data:\n",
- " f.write(struct.pack('<f', sample))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "analysis_periods = 10\n",
- "window_len = 256 # fs * analysis_periods/ff\n",
- "nfft_factor = 1\n",
- "sigma = window_len/8 # samples\n",
- "quantization_bits = 14\n",
- "\n",
- "ffts = []\n",
- "for item in test_data:\n",
- " f, t, Zxx = signal.stft((item * (2**(quantization_bits-1) - 1)).round().astype(np.int16).astype(float),\n",
- " fs = fs,\n",
- " window=('gaussian', sigma),\n",
- " nperseg = window_len,\n",
- " nfft = window_len * nfft_factor)\n",
- " #boundary = 'zeros')\n",
- " ffts.append((f, t, Zxx))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(129, 470)"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "Zxx.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "3.90625"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "1000/256"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1bae03315efe4ed7a72b911fed0056ae",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(len(test_data), figsize=(8, 20), sharex=True)\n",
- "fig.tight_layout(pad=2, h_pad=0.1)\n",
- "\n",
- "for fft, ax, label in zip(test_data, ax.flatten(), test_labels):\n",
- " ax.plot((item * (2**(quantization_bits-1) - 1)).round())\n",
- " \n",
- " ax.set_title(label, pad=-20, color='white', bbox=dict(boxstyle=\"square\", ec=(0,0,0,0), fc=(0,0,0,0.8)))\n",
- " ax.grid()\n",
- " ax.set_ylabel('f [Hz]')\n",
- "ax.set_xlabel('simulation time t [s]')\n",
- "ax.set_xlim([5000, 5200])\n",
- "None"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7182190a6bbc4481a792d5f6b7d390a0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, ax = plt.subplots(len(test_data), figsize=(8, 20), sharex=True)\n",
- "fig.tight_layout(pad=2, h_pad=0.1)\n",
- "\n",
- "for fft, ax, label in zip(ffts, ax.flatten(), test_labels):\n",
- " f, t, Zxx = fft\n",
- " ax.pcolormesh(t[1:], f[:250], np.abs(Zxx[:250,1:]))\n",
- " ax.set_title(label, pad=-20, color='white')\n",
- " ax.grid()\n",
- " ax.set_ylabel('f [Hz]')\n",
- " ax.set_ylim([30, 75]) # Hz\n",
- "ax.set_xlabel('simulation time t [s]')\n",
- "None"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([ 0. , 3.90625, 7.8125 , 11.71875, 15.625 , 19.53125,\n",
- " 23.4375 , 27.34375, 31.25 , 35.15625, 39.0625 , 42.96875,\n",
- " 46.875 , 50.78125, 54.6875 , 58.59375, 62.5 , 66.40625,\n",
- " 70.3125 , 74.21875, 78.125 , 82.03125, 85.9375 , 89.84375,\n",
- " 93.75 , 97.65625, 101.5625 , 105.46875, 109.375 , 113.28125,\n",
- " 117.1875 , 121.09375, 125. , 128.90625, 132.8125 , 136.71875,\n",
- " 140.625 , 144.53125, 148.4375 , 152.34375, 156.25 , 160.15625,\n",
- " 164.0625 , 167.96875, 171.875 , 175.78125, 179.6875 , 183.59375,\n",
- " 187.5 , 191.40625, 195.3125 , 199.21875, 203.125 , 207.03125,\n",
- " 210.9375 , 214.84375, 218.75 , 222.65625, 226.5625 , 230.46875,\n",
- " 234.375 , 238.28125, 242.1875 , 246.09375, 250. , 253.90625,\n",
- " 257.8125 , 261.71875, 265.625 , 269.53125, 273.4375 , 277.34375,\n",
- " 281.25 , 285.15625, 289.0625 , 292.96875, 296.875 , 300.78125,\n",
- " 304.6875 , 308.59375, 312.5 , 316.40625, 320.3125 , 324.21875,\n",
- " 328.125 , 332.03125, 335.9375 , 339.84375, 343.75 , 347.65625,\n",
- " 351.5625 , 355.46875, 359.375 , 363.28125, 367.1875 , 371.09375,\n",
- " 375. , 378.90625, 382.8125 , 386.71875, 390.625 , 394.53125,\n",
- " 398.4375 , 402.34375, 406.25 , 410.15625, 414.0625 , 417.96875,\n",
- " 421.875 , 425.78125, 429.6875 , 433.59375, 437.5 , 441.40625,\n",
- " 445.3125 , 449.21875, 453.125 , 457.03125, 460.9375 , 464.84375,\n",
- " 468.75 , 472.65625, 476.5625 , 480.46875, 484.375 , 488.28125,\n",
- " 492.1875 , 496.09375, 500. ])"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "f"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d26336c7e27c44c7894919fdeb614891",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, axs = plt.subplots(len(test_data), figsize=(8, 20), sharex=True)\n",
- "fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n",
- "\n",
- "for fft, ax, label in zip(ffts, axs.flatten(), test_labels):\n",
- " f, f_t, Zxx = fft\n",
- " \n",
- " n_f, n_t = Zxx.shape\n",
- " # start, stop = 180, 220\n",
- " # start, stop = 90, 110\n",
- " # start, stop = 15, 35\n",
- " # bounds_f = slice(start // 4 * nfft_factor, stop // 4 * nfft_factor)\n",
- " f_min, f_max = 30, 70 # Hz\n",
- " bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n",
- " \n",
- "\n",
- " f_mean = np.zeros(Zxx.shape[1])\n",
- " for t in range(1, Zxx.shape[1] - 1):\n",
- " frame_f = f[bounds_f]\n",
- " frame_step = frame_f[1] - frame_f[0]\n",
- " time_step = f_t[1] - f_t[0]\n",
- " #if t == 10:\n",
- " # axs[-1].plot(frame_f, frame_Z)\n",
- " frame_Z = np.abs(Zxx[bounds_f, t])\n",
- " # frame_f = f[180:220]\n",
- " # frame_Z = np.abs(Zxx[180:220, 40])\n",
- " # frame_f = f[15:35]\n",
- " # frame_Z = np.abs(Zxx[15:35, 40])\n",
- " # plt.plot(frame_f, frame_Z)\n",
- "\n",
- " # peak_f = frame_f[np.argmax(frame)]\n",
- " # plt.axvline(peak_f, color='red')\n",
- "\n",
- "# def gauss(x, *p):\n",
- "# A, mu, sigma, o = p\n",
- "# return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + o\n",
- " \n",
- " def gauss(x, *p):\n",
- " A, mu, sigma = p\n",
- " return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n",
- " \n",
- " f_start = frame_f[np.argmax(frame_Z)]\n",
- " A_start = np.max(frame_Z)\n",
- " p0 = [A_start, f_start, 1.]\n",
- " try:\n",
- " coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n",
- " # plt.plot(frame_f, gauss(frame_f, *coeff))\n",
- " #print(coeff)\n",
- " A, mu, sigma, *_ = coeff\n",
- " f_mean[t] = mu\n",
- " except RuntimeError:\n",
- " f_mean[t] = np.nan\n",
- " ax.plot(f_t[1:-1], f_mean[1:-1])\n",
- " \n",
- "# b, a = signal.butter(3,\n",
- "# 1/5, # Hz\n",
- "# btype='lowpass',\n",
- "# fs=1/time_step)\n",
- "# filtered = signal.lfilter(b, a, f_mean[1:-1], axis=0)\n",
- "# ax.plot(f_t[1:-1], filtered)\n",
- " \n",
- " ax.set_title(label, pad=-20)\n",
- " ax.set_ylabel('f [Hz]')\n",
- " ax.grid()\n",
- " if not label in ['off_frequency', 'sweep_phase_steps']:\n",
- " ax.set_ylim([49.90, 50.10])\n",
- " var = np.var(f_mean[1:-1])\n",
- " ax.text(0.5, 0.1, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='center')\n",
- " ax.text(0.5, 0.25, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n",
- "# ax.text(0.5, 0.2, f'filt. σ²={np.var(filtered) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n",
- " else:\n",
- " f_min, f_max = min(f_mean[1:-1]), max(f_mean[1:-1])\n",
- " delta = f_max - f_min\n",
- " ax.set_ylim(f_min - delta * 0.1, f_max + delta * 0.3)\n",
- " \n",
- "ax.set_xlabel('simulation time t [s]')\n",
- "None"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "labenv",
- "language": "python",
- "name": "labenv"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.2"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}