diff options
author | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2021-04-09 18:38:02 +0200 |
---|---|---|
committer | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2021-04-09 18:38:57 +0200 |
commit | 50998fcfb916ae251309bd4b464f2c122e8cb30d (patch) | |
tree | 4ecf7a7443b75ab51c4dc0c0fc9289342dc7d6a0 /hardware/fw | |
parent | 312fee491cfab436d52db4b6265107e20f3e1293 (diff) | |
download | master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.gz master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.bz2 master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.zip |
Repo re-org
Diffstat (limited to 'hardware/fw')
28 files changed, 7578 insertions, 0 deletions
diff --git a/hardware/fw/.gitignore b/hardware/fw/.gitignore new file mode 100644 index 0000000..0a0c26e --- /dev/null +++ b/hardware/fw/.gitignore @@ -0,0 +1,6 @@ +*.expand +*.map +*.lst +*.hex +*.elf +*.bin diff --git a/hardware/fw/Makefile b/hardware/fw/Makefile new file mode 100644 index 0000000..77b2a09 --- /dev/null +++ b/hardware/fw/Makefile @@ -0,0 +1,111 @@ +# Megumin LED display firmware +# Copyright (C) 2018 Sebastian Götte <code@jaseg.net> +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. + +CUBE_PATH ?= $(wildcard ~)/resource/STM32CubeF0 +CMSIS_PATH ?= $(CUBE_PATH)/Drivers/CMSIS +CMSIS_DEV_PATH ?= $(CMSIS_PATH)/Device/ST/STM32F0xx +HAL_PATH ?= $(CUBE_PATH)/Drivers/STM32F0xx_HAL_Driver + +MAC_ADDR ?= 0xdeadbeef + +CC := arm-none-eabi-gcc +LD := arm-none-eabi-ld +OBJCOPY := arm-none-eabi-objcopy +OBJDUMP := arm-none-eabi-objdump +SIZE := arm-none-eabi-size + +CFLAGS = -g -Wall -Wextra -std=gnu11 -O0 -fdump-rtl-expand +CFLAGS += -mlittle-endian -mcpu=cortex-m0 -march=armv6-m -mthumb +#CFLAGS += -ffunction-sections -fdata-sections +LDFLAGS = -nostartfiles +#LDFLAGS += -specs=rdimon.specs -DSEMIHOSTING +LDFLAGS += -Wl,-Map=main.map -nostdlib +#LDFLAGS += -Wl,--gc-sections +LIBS = -lgcc +#LIBS += -lrdimon + +# Technically we're using an STM32F030F4, but apart from the TSSOP20 package that one is largely identical to the +# STM32F030*6 and there is no separate device header provided for it, so we're faking a *6 device here. This is +# even documented in stm32f0xx.h. Thanks ST! +CFLAGS += -DSTM32F030x6 -DHSE_VALUE=19440000 + +LDFLAGS += -Tstm32_flash.ld +CFLAGS += -I$(CMSIS_DEV_PATH)/Include -I$(CMSIS_PATH)/Include -I$(HAL_PATH)/Inc -Iconfig -Wno-unused -I../common +LDFLAGS += -L$(CMSIS_PATH)/Lib/GCC -larm_cortexM0l_math + +################################################### + +.PHONY: program clean + +all: main.elf + +.clang: + echo flags = $(CFLAGS) > .clang + +cmsis_exports.c: $(CMSIS_DEV_PATH)/Include/stm32f030x6.h $(CMSIS_PATH)/Include/core_cm0.h + python3 tools/gen_cmsis_exports.py $^ > $@ + +%.o: %.c + $(CC) -c $(CFLAGS) -o $@ $^ +# $(CC) -E $(CFLAGS) -o $(@:.o=.pp) $^ + +%.o: %.s + $(CC) -c $(CFLAGS) -o $@ $^ +# $(CC) -E $(CFLAGS) -o $(@:.o=.pp) $^ + +%.dot: %.elf + r2 -a arm -qc 'aa;agC' $< 2>/dev/null >$@ + +sources.tar.xz: main.c Makefile + tar -caf $@ $^ + +# don't ask... +sources.tar.xz.zip: sources.tar.xz + zip $@ $^ + +sources.c: sources.tar.xz.zip + xxd -i $< | head -n -1 | sed 's/=/__attribute__((section(".source_tarball"))) =/' > $@ + +main.elf: main.c adc.c serial.c cobs.c startup_stm32f030x6.s system_stm32f0xx.c $(HAL_PATH)/Src/stm32f0xx_ll_utils.c base.c cmsis_exports.c + $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS) + $(OBJCOPY) -O ihex $@ $(@:.elf=.hex) + $(OBJCOPY) -O binary $@ $(@:.elf=.bin) + $(OBJDUMP) -St $@ >$(@:.elf=.lst) + $(SIZE) $@ + +program: main.elf openocd.cfg + openocd -f openocd.cfg -c "program $< verify reset exit" + +8b10b_test_encode: 8b10b_test_encode.c 8b10b.c + gcc -o $@ $^ + +8b10b_test_decode: 8b10b_test_decode.c 8b10b.c + gcc -o $@ $^ + +protocol_test: protocol.c protocol_test.c + gcc -o $@ -O0 -Wall -Wextra -g -I../common $^ + +clean: + rm -f **.o + rm -f main.elf main.hex main.bin main.map main.lst + rm -f **.expand + rm -f cmsis_exports.c + rm -f sources.tar.xz + rm -f sources.tar.xz.zip + rm -f sources.c + rm -f *.dot + rm -f protocol_test + diff --git a/hardware/fw/Scope.ipynb b/hardware/fw/Scope.ipynb new file mode 100644 index 0000000..82898fd --- /dev/null +++ b/hardware/fw/Scope.ipynb @@ -0,0 +1,906 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "%matplotlib notebook\n", + "import numpy as np\n", + "import struct\n", + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_data(offx=0, end=-1, signed=False, channels=1):\n", + " with open('/tmp/scope_dump.bin', 'rb') as f:\n", + " raw_data = f.read()\n", + " data = struct.unpack(f'<{len(raw_data)//2}{\"h\" if signed else \"H\"}', raw_data)\n", + " \n", + " fig, axs = plt.subplots(channels*2, 1, squeeze=False, sharex=True, figsize=(10, 5))\n", + " axs = axs.flatten()\n", + " for i, (ax_t, ax_f) in enumerate(zip(axs[0::2], axs[1::2])):\n", + " le_slice = data[offx:][:end][i::channels]\n", + " ax_t.plot(np.linspace(0, len(le_slice)/1000, len(le_slice)),\n", + " [math.nan if x==-255 else x for x in le_slice])\n", + " ax_t.grid() \n", + " \n", + " ax_f.specgram(le_slice, Fs=1000)\n", + " ax_f.grid()\n", + " \n", + " return data" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = plot_data(offx=4, signed=True, channels=1)\n", + "#print(''.join(str(x) for x in data[4:][3::4]))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/tmp/foo'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-32-d8e3fa510bf1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mplotdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mdelta\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mdelta\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplotdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mplot_avg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m<ipython-input-32-d8e3fa510bf1>\u001b[0m in \u001b[0;36mplot_avg\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mplot_avg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/tmp/foo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mvals\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrombuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'uint16'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/tmp/foo'" + ] + } + ], + "source": [ + "import random, struct, numpy as np\n", + "\n", + "def plot_avg():\n", + " with open('/tmp/foo', 'rb') as f:\n", + " vals = np.frombuffer(f.read(), dtype='uint16')\n", + " \n", + " vals = vals.copy()\n", + " idx = 1\n", + " vals &= 1<<idx\n", + " vals >>= idx\n", + " \n", + " delta = 10000\n", + " plotdata = [sum(vals[i:i+delta])/delta for i in range(0, len(vals), delta)]\n", + " plt.plot(plotdata)\n", + "plot_avg()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/hardware/fw/adc.c b/hardware/fw/adc.c new file mode 100644 index 0000000..7e1b8cc --- /dev/null +++ b/hardware/fw/adc.c @@ -0,0 +1,136 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "adc.h" +#include "serial.h" + +#include <stdbool.h> +#include <stdlib.h> +#include <assert.h> + +static struct __attribute__((__packed__)) hl_adc_pkt { + struct ll_pkt ll; + uint16_t seq; + int32_t gps_1pps_period_sysclk; + volatile uint16_t data[32]; +} adc_pkt[2]; +static uint16_t current_seq = 0; +static int current_buf = 0; + +static void adc_dma_init(void); +static void adc_dma_launch(void); + + +/* Mode that can be used for debugging */ +void adc_init() { + adc_dma_init(); + + /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ + ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */ + /* Sampling time 239.5 ADC clock cycles -> total conversion time 38.5us*/ + ADC1->SMPR = (7<<ADC_SMPR_SMP_Pos); + + /* Setup DMA and triggering */ + /* Trigger from TIM1 TRGO */ + ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos); + ADC1->CHSELR = ADC_CHSELR_CHSEL2; + /* Perform self-calibration */ + ADC1->CR |= ADC_CR_ADCAL; + while (ADC1->CR & ADC_CR_ADCAL) + ; + /* Enable conversion */ + ADC1->CR |= ADC_CR_ADEN; + ADC1->CR |= ADC_CR_ADSTART; +} + +static void adc_dma_init() { + /* Configure DMA 1 Channel 1 to get rid of all the data */ + DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; + DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos); + DMA1_Channel1->CCR |= + (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */ + | (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */ + | DMA_CCR_MINC + | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */ + + /* triggered on half-transfer and on transfer completion. We use this to send out the ADC data and to trap into GDB. */ + NVIC_EnableIRQ(DMA1_Channel1_IRQn); + NVIC_SetPriority(DMA1_Channel1_IRQn, 2<<5); + + adc_dma_launch(); +} + +void adc_dma_launch() { + DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Disable channel */ + current_buf = !current_buf; + DMA1_Channel1->CMAR = (unsigned int)&(adc_pkt[current_buf].data); + DMA1_Channel1->CNDTR = ARRAY_LEN(adc_pkt[current_buf].data); + DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ +} + +void adc_timer_init(int psc, int ivl) { + TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal */ + TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */ + TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ + TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ + /* Set prescaler and interval */ + TIM1->PSC = psc-1; + TIM1->ARR = ivl-1; + /* Preload all values */ + TIM1->EGR = TIM_EGR_UG; + TIM1->CR1 = TIM_CR1_ARPE; + /* And... go! */ + TIM1->CR1 |= TIM_CR1_CEN; +} + +/* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */ +static void gdb_dump(void) { +} + +void DMA1_Channel1_IRQHandler(void) { + uint32_t isr = DMA1->ISR; + /* Clear the interrupt flag */ + DMA1->IFCR |= DMA_IFCR_CGIF1; + adc_dma_launch(); + + gdb_dump(); + + adc_pkt[!current_buf].seq = current_seq++; + adc_pkt[!current_buf].gps_1pps_period_sysclk = gps_1pps_period_sysclk; + /* Ignore return value since we can't do anything here. Overruns are logged in serial.c. */ + usart_send_packet_nonblocking(&adc_pkt[!current_buf].ll, sizeof(adc_pkt[!current_buf])); + + /* + static int debug_buf_pos = 0; + if (st->sync) { + if (debug_buf_pos < NCH) { + debug_buf_pos = NCH; + } else { + adc_buf[debug_buf_pos++] = symbol; + + if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { + debug_buf_pos = 0; + st->sync = 0; + gdb_dump(); + for (int i=0; i<sizeof(adc_buf)/sizeof(adc_buf[0]); i++) + adc_buf[i] = -255; + } + } + } + */ +} + diff --git a/hardware/fw/adc.h b/hardware/fw/adc.h new file mode 100644 index 0000000..cba18d1 --- /dev/null +++ b/hardware/fw/adc.h @@ -0,0 +1,26 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef __ADC_H__ +#define __ADC_H__ + +#include "global.h" + +void adc_init(); +void adc_timer_init(int psc, int ivl); + +#endif/*__ADC_H__*/ diff --git a/hardware/fw/base.c b/hardware/fw/base.c new file mode 100644 index 0000000..8e7c03b --- /dev/null +++ b/hardware/fw/base.c @@ -0,0 +1,25 @@ + +#include <unistd.h> +#include <stdbool.h> + +int __errno = 0; +void *_impure_ptr = NULL; + +void __sinit(void) { +} + +void *memset(void *s, int c, size_t n) { + char *end = (char *)s + n; + for (char *p = (char *)s; p < end; p++) + *p = (char)c; + return s; +} + +size_t strlen(const char *s) { + const char *start = s; + while (*s++); + return s - start - 1; +} + +void __assert_func(bool value) { +} diff --git a/hardware/fw/cmsis_exports.c b/hardware/fw/cmsis_exports.c new file mode 100644 index 0000000..39874b5 --- /dev/null +++ b/hardware/fw/cmsis_exports.c @@ -0,0 +1,48 @@ +#ifndef __GENERATED_CMSIS_HEADER_EXPORTS__ +#define __GENERATED_CMSIS_HEADER_EXPORTS__ + +#include <stm32f030x6.h> + +/* stm32f030x6.h */ +TIM_TypeDef *tim3 = TIM3; +TIM_TypeDef *tim14 = TIM14; +RTC_TypeDef *rtc = RTC; +WWDG_TypeDef *wwdg = WWDG; +IWDG_TypeDef *iwdg = IWDG; +I2C_TypeDef *i2c1 = I2C1; +PWR_TypeDef *pwr = PWR; +SYSCFG_TypeDef *syscfg = SYSCFG; +EXTI_TypeDef *exti = EXTI; +ADC_TypeDef *adc1 = ADC1; +ADC_Common_TypeDef *adc1_common = ADC1_COMMON; +ADC_Common_TypeDef *adc = ADC; +TIM_TypeDef *tim1 = TIM1; +SPI_TypeDef *spi1 = SPI1; +USART_TypeDef *usart1 = USART1; +TIM_TypeDef *tim16 = TIM16; +TIM_TypeDef *tim17 = TIM17; +DBGMCU_TypeDef *dbgmcu = DBGMCU; +DMA_TypeDef *dma1 = DMA1; +DMA_Channel_TypeDef *dma1_channel1 = DMA1_Channel1; +DMA_Channel_TypeDef *dma1_channel2 = DMA1_Channel2; +DMA_Channel_TypeDef *dma1_channel3 = DMA1_Channel3; +DMA_Channel_TypeDef *dma1_channel4 = DMA1_Channel4; +DMA_Channel_TypeDef *dma1_channel5 = DMA1_Channel5; +FLASH_TypeDef *flash = FLASH; +OB_TypeDef *ob = OB; +RCC_TypeDef *rcc = RCC; +CRC_TypeDef *crc = CRC; +GPIO_TypeDef *gpioa = GPIOA; +GPIO_TypeDef *gpiob = GPIOB; +GPIO_TypeDef *gpioc = GPIOC; +GPIO_TypeDef *gpiod = GPIOD; +GPIO_TypeDef *gpiof = GPIOF; + +#include <core_cm0.h> + +/* core_cm0.h */ +SCB_Type *scb = SCB; +SysTick_Type *systick = SysTick; +NVIC_Type *nvic = NVIC; + +#endif//__GENERATED_CMSIS_HEADER_EXPORTS__ diff --git a/hardware/fw/cobs.c b/hardware/fw/cobs.c new file mode 100644 index 0000000..041dd8f --- /dev/null +++ b/hardware/fw/cobs.c @@ -0,0 +1,212 @@ + +#include "serial.h" +#include "cobs.h" + +int cobs_encode_usart(int (*output)(char), char *src, size_t srclen) { + if (srclen > 254) + return -1; + + size_t p = 0; + while (p <= srclen) { + + char val; + if (p != 0 && src[p-1] != 0) { + val = src[p-1]; + + } else { + size_t q = p; + while (q < srclen && src[q] != 0) + q++; + val = (char)q-p+1; + } + + int rv = output(val); + if (rv) + return rv; + p++; + } + + int rv = output(0); + if (rv) + return rv; + + return 0; +} + +/*@ requires \valid(dst + (0..dstlen-1)); + @ requires \valid_read(src + (0..srclen-1)); + @ requires \separated(dst + (0..dstlen-1), src + (0..srclen-1)); + @ + @ behavior maybe_valid_frame: + @ assumes 1 <= srclen <= dstlen <= 65535; + @ assumes \exists integer j; j > 0 && \forall integer i; 0 <= i < j ==> src[i] != 0; + @ assumes \exists integer i; 0 <= i < srclen && src[i] == 0; + @ assigns dst[0..dstlen-1]; + @ ensures \result >= 0 || \result == -3; + @ ensures \result >= 0 ==> src[\result+1] == 0; + @ ensures \result >= 0 ==> (\forall integer i; 0 <= i < \result ==> src[i] != 0); + @ + @ behavior invalid_frame: + @ assumes 1 <= srclen <= dstlen <= 65535; + @ assumes src[0] == 0 || \forall integer i; 0 <= i < srclen ==> src[i] != 0; + @ assigns dst[0..dstlen-1]; + @ ensures \result == -2; + @ + @ behavior invalid_buffers: + @ assumes dstlen < 0 || dstlen > 65535 + @ || srclen < 1 || srclen > 65535 + @ || dstlen < srclen; + @ assigns \nothing; + @ ensures \result == -1; + @ + @ complete behaviors; + @ disjoint behaviors; + @*/ +ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen) { + if (dstlen > 65535 || srclen > 65535) + return -1; + + if (srclen < 1) + return -1; + + if (dstlen < srclen) + return -1; + + size_t p = 1; + size_t c = (unsigned char)src[0]; + //@ assert 0 <= c < 256; + //@ assert 0 <= c; + //@ assert c < 256; + if (c == 0) + return -2; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ + //@ assert c >= 0; + //@ assert c != 0; + //@ assert c <= 257; + //@ assert c > 0; + //@ assert c >= 0 && c != 0 ==> c > 0; + + /*@ //loop invariant \forall integer i; 0 <= i <= p ==> (i == srclen || src[i] != 0); + @ loop invariant \forall integer i; 1 <= i < p ==> src[i] != 0; + @ loop invariant c > 0; + @ loop invariant 1 <= p <= srclen <= dstlen <= 65535; + @ loop invariant \separated(dst + (0..dstlen-1), src + (0..srclen-1)); + @ loop invariant \valid_read(src + (0..srclen-1)); + @ loop invariant \forall integer i; 1 <= i <= srclen ==> \valid(dst + i - 1); + @ loop assigns dst[0..dstlen-1], p, c; + @ loop variant srclen-p; + @*/ + while (p < srclen && src[p]) { + char val; + c--; + + //@ assert src[p] != 0; + if (c == 0) { + c = (unsigned char)src[p]; + val = 0; + } else { + val = src[p]; + } + + //@ assert 0 <= p-1 <= dstlen-1; + dst[p-1] = val; + p++; + } + + if (p == srclen) + return -2; /* Invalid framing. The terminating null byte should always be present in the input buffer. */ + + if (c != 1) + return -3; /* Invalid framing. The skip counter does not hit the end of the frame. */ + + //@ assert 0 < p <= srclen <= 65535; + //@ assert src[p] == 0; + //@ assert \forall integer i; 1 <= i < p ==> src[i] != 0; + return p-1; +} + +void cobs_decode_incremental_initialize(struct cobs_decode_state *state) { + state->p = 0; + state->c = 0; +} + +int cobs_decode_incremental(struct cobs_decode_state *state, char *dst, size_t dstlen, char src) { + if (state->p == 0) { + if (src == 0) + goto empty_errout; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ + state->c = (unsigned char)src; + state->p++; + return 0; + } + + if (!src) { + if (state->c != 1) + goto errout; /* Invalid framing. The skip counter does not hit the end of the frame. */ + int rv = state->p-1; + cobs_decode_incremental_initialize(state); + return rv; + } + + char val; + state->c--; + + if (state->c == 0) { + state->c = (unsigned char)src; + val = 0; + } else { + val = src; + } + + size_t pos = state->p-1; + if (pos >= dstlen) + return -2; /* output buffer too small */ + dst[pos] = val; + state->p++; + return 0; + +errout: + cobs_decode_incremental_initialize(state); + return -1; + +empty_errout: + cobs_decode_incremental_initialize(state); + return -3; +} + +#ifdef VALIDATION +/*@ + @ requires 0 <= d < 256; + @ assigns \nothing; + @*/ +size_t test(char foo, unsigned int d) { + unsigned int c = (unsigned char)foo; + if (c != 0) { + //@ assert c < 256; + //@ assert c >= 0; + //@ assert c != 0; + //@ assert c > 0; + } + if (d != 0) { + //@ assert d >= 0; + //@ assert d != 0; + //@ assert d > 0; + } + return c + d; +} + +#include <__fc_builtin.h> + +void main(void) { + char inbuf[254]; + char cobsbuf[256]; + char outbuf[256]; + + size_t range = Frama_C_interval(0, sizeof(inbuf)); + Frama_C_make_unknown((char *)inbuf, range); + + cobs_encode(cobsbuf, sizeof(cobsbuf), inbuf, sizeof(inbuf)); + cobs_decode(outbuf, sizeof(outbuf), cobsbuf, sizeof(cobsbuf)); + + //@ assert \forall integer i; 0 <= i < sizeof(inbuf) ==> outbuf[i] == inbuf[i]; +} +#endif//VALIDATION + diff --git a/hardware/fw/cobs.h b/hardware/fw/cobs.h new file mode 100644 index 0000000..8c84ca4 --- /dev/null +++ b/hardware/fw/cobs.h @@ -0,0 +1,23 @@ +#ifndef __COBS_H__ +#define __COBS_H__ + +#include <stdint.h> +#include <unistd.h> +#include <string.h> + + +struct cobs_decode_state { + size_t p; + size_t c; +}; + + +ssize_t cobs_encode(char *dst, size_t dstlen, char *src, size_t srclen); +ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen); + +int cobs_encode_usart(int (*output)(char), char *src, size_t srclen); + +void cobs_decode_incremental_initialize(struct cobs_decode_state *state); +int cobs_decode_incremental(struct cobs_decode_state *state, char *dst, size_t dstlen, char src); + +#endif//__COBS_H__ diff --git a/hardware/fw/crctest.py b/hardware/fw/crctest.py new file mode 100644 index 0000000..5c97be9 --- /dev/null +++ b/hardware/fw/crctest.py @@ -0,0 +1,79 @@ +custom_crc_table = {} + +def generate_crc32_table(_poly): + + global custom_crc_table + + for i in range(256): + c = i << 24 + + for j in range(8): + c = (c << 1) ^ _poly if (c & 0x80000000) else c << 1 + + custom_crc_table[i] = c & 0xffffffff + + +def crc32_stm(bytes_arr): + + length = len(bytes_arr) + crc = 0xffffffff + + k = 0 + while length >= 4: + + v = ((bytes_arr[k] << 24) & 0xFF000000) | ((bytes_arr[k+1] << 16) & 0xFF0000) | \ + ((bytes_arr[k+2] << 8) & 0xFF00) | (bytes_arr[k+3] & 0xFF) + + crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ v)] + crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 8))] + crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 16))] + crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 24))] + + k += 4 + length -= 4 + + if length > 0: + v = 0 + + for i in range(length): + v |= (bytes_arr[k+i] << 24-i*8) + + if length == 1: + v &= 0xFF000000 + + elif length == 2: + v &= 0xFFFF0000 + + elif length == 3: + v &= 0xFFFFFF00 + + crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v ) )]; + crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 8) )]; + crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 16) )]; + crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 24) )]; + + return crc + +poly = 0x04C11DB7 +buf = bytes(reversed([1, 2, 3, 4])) + +generate_crc32_table(poly) +print(hex(crc32_stm(bytearray(buf)))) + +from crccheck import crc +import struct + +def rev_bits_in_word(w): + return sum( ((w>>i)&1) << (31-i) for i in range(32) ) + +import zlib +def crc32stm(inbytes): + crc32 = crc.Crc32.calc(inbytes)^0xffffffff + #crc32 = zlib.crc32(inbytes)^0xffffffff + crc32 = rev_bits_in_word(crc32) + return crc32 + +#data = [0x80,0x40,0xc0,0x20] +data = [0x00, 0, 0, 0x80, 0, 0, 0, 0x80] +print(hex(crc32stm(bytes(data)))) +print(hex(zlib.crc32(bytes([0, 0, 0, 1]))^0xffffffff)) diff --git a/hardware/fw/global.h b/hardware/fw/global.h new file mode 100644 index 0000000..28ac6cd --- /dev/null +++ b/hardware/fw/global.h @@ -0,0 +1,62 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef __GLOBAL_H__ +#define __GLOBAL_H__ + +/* Workaround for sub-par ST libraries */ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wstrict-aliasing" +#include <stm32f0xx.h> +#include <stm32f0xx_ll_utils.h> +#include <stm32f0xx_ll_spi.h> +#pragma GCC diagnostic pop + +#include <system_stm32f0xx.h> + +#include <stdint.h> +#include <stdbool.h> +#include <string.h> +#include <unistd.h> + +/* Microcontroller part number: STM32F030F4P6 */ + +/* Things used for module status reporting. */ +#define FIRMWARE_VERSION 1 +#define HARDWARE_VERSION 0 + +#define TS_CAL1 (*(uint16_t *)0x1FFFF7B8) +#define VREFINT_CAL (*(uint16_t *)0x1FFFF7BA) + +#define ARRAY_LEN(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) + +extern volatile unsigned int sys_time; +extern volatile unsigned int sys_time_seconds; + +#define UNUSED(var) ((void)var) + +union leds { + struct { + unsigned int pps, sd_card, usb, ocxo, error, _nc1, _nc2, _nc3; + }; + unsigned int arr[8]; +}; + +extern volatile union leds leds; +extern volatile int32_t gps_1pps_period_sysclk; + +#endif/*__GLOBAL_H__*/ diff --git a/hardware/fw/grid_scope.ipynb b/hardware/fw/grid_scope.ipynb new file mode 100644 index 0000000..1e5f942 --- /dev/null +++ b/hardware/fw/grid_scope.ipynb @@ -0,0 +1,3699 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import sqlite3\n", + "import struct\n", + "import datetime\n", + "\n", + "import matplotlib\n", + "from matplotlib import pyplot as plt\n", + "from matplotlib import patches\n", + "import numpy as np\n", + "from scipy import signal, optimize\n", + "from tqdm.notebook import tnrange, tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "db = sqlite3.connect('waveform.sqlite3')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run 000: 2020-01-30 14:24:25 - 2020-01-30 14:24:33 ( 0:00:07.571, 6880sp)\n", + "Run 001: 2020-01-30 14:24:56 - 2020-01-30 14:25:25 ( 0:00:28.305, 8992sp)\n", + "Run 002: 2020-01-30 14:25:33 - 2020-01-30 14:30:37 ( 0:05:04.016, 290112sp)\n", + "Run 003: 2020-01-30 14:31:31 - 2020-01-30 14:37:59 ( 0:06:27.900, 384192sp)\n", + "Run 004: 2020-01-30 14:38:30 - 2020-01-30 14:45:27 ( 0:06:56.604, 417216sp)\n", + "Run 005: 2020-01-30 15:18:50 - 2020-01-30 15:19:01 ( 0:00:10.690, 10240sp)\n", + "Run 006: 2020-01-30 16:37:15 - 2020-01-30 16:37:17 ( 0:00:02.527, 2560sp)\n", + "Run 007: 2020-01-30 16:44:23 - 2020-01-30 16:58:48 ( 0:14:24.293, 665600sp)\n", + "Run 008: 2020-01-30 17:06:35 - 2020-01-30 17:46:16 ( 0:39:41.608, 2163168sp)\n", + "Run 009: 2020-01-30 17:46:20 - 2020-01-30 18:11:16 ( 0:24:55.928, 1492480sp)\n", + "Run 010: 2020-01-30 18:11:39 - 2020-01-30 18:22:29 ( 0:10:50.025, 642560sp)\n", + "Run 011: 2020-01-30 18:22:32 - 2020-01-30 19:33:52 ( 1:11:20.495, 4280320sp)\n", + "Run 012: 2020-01-31 13:16:53 - 2020-01-31 13:18:12 ( 0:01:19.317, 79360sp)\n", + "Run 013: 2020-01-31 13:30:54 - 2020-01-31 13:31:35 ( 0:00:40.762, 40960sp)\n", + "Run 014: 2020-01-31 13:45:37 - 2020-01-31 13:45:42 ( 0:00:05.090, 5120sp)\n", + "Run 015: 2020-01-31 13:53:56 - 2020-01-31 13:54:01 ( 0:00:05.089, 5120sp)\n", + "Run 016: 2020-01-31 13:54:21 - 2020-01-31 13:54:26 ( 0:00:05.088, 5120sp)\n", + "Run 017: 2020-01-31 13:55:41 - 2020-01-31 13:55:46 ( 0:00:05.087, 5120sp)\n", + "Run 018: 2020-01-31 13:56:13 - 2020-01-31 13:56:19 ( 0:00:05.091, 5120sp)\n", + "Run 019: 2020-01-31 13:56:27 - 2020-01-31 13:56:30 ( 0:00:02.527, 2560sp)\n", + "Run 020: 2020-01-31 13:56:40 - 2020-01-31 13:56:48 ( 0:00:07.649, 7680sp)\n", + "Run 021: 2020-01-31 13:57:10 - 2020-01-31 13:58:34 ( 0:01:24.342, 84416sp)\n", + "Run 022: 2020-01-31 14:05:08 - 2020-01-31 14:05:24 ( 0:00:15.242, 15360sp)\n", + "Run 023: 2020-01-31 14:05:33 - 2020-01-31 14:12:50 ( 0:07:17.092, 435200sp)\n", + "Run 024: 2020-01-31 14:13:21 - 2020-01-31 14:15:39 ( 0:02:18.190, 138240sp)\n", + "Run 025: 2020-01-31 14:18:16 - 2020-01-31 18:58:25 ( 4:40:09.251, 16611840sp)\n" + ] + } + ], + "source": [ + "for run_id, start, end, count in db.execute('SELECT run_id, MIN(rx_ts), MAX(rx_ts), COUNT(*) FROM measurements GROUP BY run_id'):\n", + " foo = lambda x: datetime.datetime.fromtimestamp(x/1000)\n", + " start, end = foo(start), foo(end)\n", + " print(f'Run {run_id:03d}: {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S} ({str(end-start)[:-3]:>13}, {count*32:>9d}sp)')\n", + "last_run, n_records = run_id, count\n", + "sampling_rate = 1000.0" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "par = lambda *rs: 1/sum(1/r for r in rs) # resistor parallel calculation\n", + "\n", + "# FIXME: These are for the first prototype only!\n", + "vmeas_source_impedance = 330e3\n", + "vmeas_source_scale = 0.5\n", + "\n", + "vcc = 15.0\n", + "vmeas_div_high = 27e3\n", + "vmeas_div_low = par(4.7e3, 10e3)\n", + "vmeas_div_voltage = vcc * vmeas_div_low / (vmeas_div_high + vmeas_div_low)\n", + "vmeas_div_impedance = par(vmeas_div_high, vmeas_div_low)\n", + "\n", + "#vmeas_overall_factor = vmeas_div_impedance / (vmeas_source_impedance + vmeas_div_impedance)\n", + "v0 = 1.5746\n", + "v100 = 2.004\n", + "vn100 = 1.1452\n", + "\n", + "adc_vcc = 3.3 # V\n", + "adc_fullscale = 4095\n", + "\n", + "adc_val_to_voltage_factor = 1/adc_fullscale * adc_vcc\n", + "\n", + "adc_count_to_vmeas = lambda x: (x*adc_val_to_voltage_factor - v0) / (v100-v0) * 100" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afc732c0ada8419e89a7ff2551212c00", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=519120), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "limit = n_records\n", + "record_size = 32\n", + "skip_dropped_sections = False\n", + "\n", + "data = np.zeros(limit*record_size)\n", + "data[:] = np.nan\n", + "\n", + "last_seq = None\n", + "write_index = 0\n", + "for i, (seq, chunk) in tqdm(enumerate(db.execute(\n", + " 'SELECT seq, data FROM measurements WHERE run_id = ? ORDER BY rx_ts LIMIT ? OFFSET ?',\n", + " (last_run, limit, n_records-limit))), total=n_records):\n", + " \n", + " if last_seq is None or seq == (last_seq + 1)%0xffff:\n", + " last_seq = seq\n", + " idx = write_index if skip_dropped_sections else i\n", + " data[idx*record_size:(idx+1)*record_size] = np.frombuffer(chunk, dtype='<H')\n", + " write_index += 1\n", + " \n", + " elif seq > last_seq:\n", + " last_seq = seq\n", + " # nans = np.empty((record_size,))\n", + " # nans[:] = np.nan\n", + " # data = np.append(data, nans) FIXME\n", + " \n", + "data = (data * adc_val_to_voltage_factor - v0) / (v100-v0) * 100" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "227.138252895397" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_not_nan = data[~np.isnan(data)]\n", + "np.sqrt(np.mean(np.square(data_not_nan)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n", + "fig.tight_layout(pad=3, h_pad=0.1)\n", + "\n", + "range_start, range_len = -300, 60 # [s]\n", + "\n", + "data_slice = data[ int(range_start * sampling_rate) : int((range_start + range_len) * sampling_rate) ]\n", + "\n", + "top.grid()\n", + "top.plot(np.linspace(0, range_len, int(range_len*sampling_rate)), data_slice, lw=1.0)\n", + "top.set_xlim([range_len/2-0.25, range_len/2+0.25])\n", + "mean = np.mean(data_not_nan)\n", + "rms = np.sqrt(np.mean(np.square(data_not_nan - mean)))\n", + "peak = np.max(np.abs(data_not_nan - mean))\n", + "top.axhline(mean, color='red')\n", + "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", + "top.text(0, mean, f'mean: {mean:.3f}', color='white', bbox=bbox)\n", + "top.text(0.98, 0.2, f'V_RMS: {rms:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", + "top.text(0.98, 0.1, f'V_Pk: {peak:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", + "\n", + "bottom.grid()\n", + "bottom.specgram(data_slice, Fs=sampling_rate)\n", + "top.set_ylabel('U [V]')\n", + "bottom.set_ylabel('F [Hz]')\n", + "bottom.set_xlabel('t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "fs = sampling_rate # Hz\n", + "ff = 50 # Hz\n", + "\n", + "analysis_periods = 10\n", + "window_len = fs * analysis_periods/ff\n", + "nfft_factor = 4\n", + "sigma = window_len/8 # samples\n", + "\n", + "f, t, Zxx = signal.stft(data,\n", + " fs = fs,\n", + " window=('gaussian', sigma),\n", + " nperseg = window_len,\n", + " nfft = window_len * nfft_factor)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9, 3))\n", + "fig.tight_layout(pad=2, h_pad=0.1)\n", + "\n", + "ax.pcolormesh(t[-200:-100], f[:250], np.abs(Zxx[:250,-200:-100]))\n", + "ax.set_title(f\"Run {last_run}\", pad=-20, color='white')\n", + "ax.grid()\n", + "ax.set_ylabel('f [Hz]')\n", + "ax.set_ylim([30, 75]) # Hz\n", + "ax.set_xlabel('simulation time t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "36ffcac30c8b4b378d3c422d3ef0698b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=166118), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "f_t = t\n", + "\n", + "n_f, n_t = Zxx.shape\n", + "# start, stop = 180, 220\n", + "# start, stop = 90, 110\n", + "# start, stop = 15, 35\n", + "# bounds_f = slice(start // 4 * nfft_factor, stop // 4 * nfft_factor)\n", + "f_min, f_max = 30, 70 # Hz\n", + "bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n", + "\n", + "\n", + "f_mean = np.zeros(Zxx.shape[1])\n", + "for le_t in tnrange(1, Zxx.shape[1] - 1):\n", + " frame_f = f[bounds_f]\n", + " frame_step = frame_f[1] - frame_f[0]\n", + " time_step = f_t[1] - f_t[0]\n", + " #if t == 10:\n", + " # axs[-1].plot(frame_f, frame_Z)\n", + " frame_Z = np.abs(Zxx[bounds_f, le_t])\n", + " # frame_f = f[180:220]\n", + " # frame_Z = np.abs(Zxx[180:220, 40])\n", + " # frame_f = f[15:35]\n", + " # frame_Z = np.abs(Zxx[15:35, 40])\n", + " # plt.plot(frame_f, frame_Z)\n", + "\n", + " # peak_f = frame_f[np.argmax(frame)]\n", + " # plt.axvline(peak_f, color='red')\n", + "\n", + "# def gauss(x, *p):\n", + "# A, mu, sigma, o = p\n", + "# return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + o\n", + "\n", + " def gauss(x, *p):\n", + " A, mu, sigma = p\n", + " return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n", + "\n", + " f_start = frame_f[np.argmax(frame_Z)]\n", + " A_start = np.max(frame_Z)\n", + " p0 = [A_start, f_start, 1.]\n", + " try:\n", + " coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n", + " # plt.plot(frame_f, gauss(frame_f, *coeff))\n", + " #print(coeff)\n", + " A, mu, sigma, *_ = coeff\n", + " f_mean[le_t] = mu\n", + " except Exception:\n", + " f_mean[le_t] = np.nan" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n", + "fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n", + "\n", + "label = f'Run {last_run}'\n", + "ax.plot(f_t[1:-1], f_mean[1:-1])\n", + "\n", + "# b, a = signal.butter(3,\n", + "# 1/5, # Hz\n", + "# btype='lowpass',\n", + "# fs=1/time_step)\n", + "# filtered = signal.lfilter(b, a, f_mean[1:-1], axis=0)\n", + "# ax.plot(f_t[1:-1], filtered)\n", + "\n", + "ax.set_title(label, pad=-20)\n", + "ax.set_ylabel('f [Hz]')\n", + "ax.grid()\n", + "if not label in ['off_frequency', 'sweep_phase_steps']:\n", + " ax.set_ylim([49.90, 50.10])\n", + " var = np.var(f_mean[~np.isnan(f_mean)][1:-1])\n", + " ax.text(0.5, 0.08, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", + " ax.text(0.5, 0.15, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", + "\n", + "# ax.text(0.5, 0.2, f'filt. σ²={np.var(filtered) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n", + "else:\n", + " f_min, f_max = min(f_mean[1:-1]), max(f_mean[1:-1])\n", + " delta = f_max - f_min\n", + " ax.set_ylim(f_min - delta * 0.1, f_max + delta * 0.3)\n", + "\n", + "for i in np.where(np.isnan(f_mean))[0]:\n", + " ax.axvspan(f_t[i], f_t[i+1], color='lightblue')\n", + "\n", + "ax.set_xlabel('recording time t [s]')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f_copy = np.copy(f_mean[1:-1])\n", + "f_copy[np.isnan(f_copy)] = np.mean(f_copy[~np.isnan(f_copy)])\n", + "b, a = signal.cheby2(7, 86, 100, 'low', output='ba', fs=1000)\n", + "filtered = signal.lfilter(b, a, f_copy)\n", + "\n", + "b2, a2 = signal.cheby2(3, 30, 1, 'high', output='ba', fs=1000)\n", + "filtered2 = signal.lfilter(b2, a2, filtered)\n", + "\n", + "fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n", + "ax1.plot(f_t[1:-1], f_copy, color='lightgray')\n", + "ax1.set_ylim([49.90, 50.10])\n", + "ax1.grid()\n", + "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", + "ax1.xaxis.set_major_formatter(formatter)\n", + "zoom_offx = 7000 # s\n", + "zoom_len = 300 # s\n", + "ax1.set_xlim([zoom_offx, zoom_offx + zoom_len])\n", + "\n", + "ax1.plot(f_t[1:-1], filtered, color='orange')\n", + "ax1r = ax1.twinx()\n", + "ax1r.plot(f_t[1:-1], filtered2, color='red')\n", + "ax1r.set_ylim([-0.015, 0.015])\n", + "ax1.set_title(f'Zoomed trace ({datetime.timedelta(seconds=zoom_len)})', pad=-20)\n", + "\n", + "\n", + "ax2.set_title(f'Run {last_run}')\n", + "ax2.plot(f_t[1:-1], f_copy, color='orange')\n", + "\n", + "ax2r = ax2.twinx()\n", + "ax2r.set_ylim([-0.1, 0.1])\n", + "ax2r.plot(f_t[1:-1], filtered2, color='red')\n", + "#ax2.plot(f_t[1:-1], filtered, color='orange', zorder=1)\n", + "ax2.set_ylim([49.90, 50.10])\n", + "ax2.set_xlim([0, f_t[-2]])\n", + "ax2.grid()\n", + "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", + "ax2.xaxis.set_major_formatter(formatter)\n", + "\n", + "ax2.legend(handles=[\n", + " patches.Patch(color='lightgray', label='Raw frequency'),\n", + " patches.Patch(color='orange', label='low-pass filtered'),\n", + " patches.Patch(color='red', label='band-pass filtered')])\n", + "\n", + "#ax2r.spines['right'].set_color('red')\n", + "ax2r.yaxis.label.set_color('red')\n", + "#ax2r.tick_params(axis='y', colors='red')\n", + "\n", + "#ax1r.spines['right'].set_color('red')\n", + "ax1r.yaxis.label.set_color('red')\n", + "#ax1r.tick_params(axis='y', colors='red')\n", + "\n", + "ax1.set_ylabel('f [Hz]')\n", + "ax1r.set_ylabel('band-pass Δf [Hz]')\n", + "ax2.set_ylabel('f [Hz]')\n", + "ax2r.set_ylabel('band-pass Δf [Hz]')\n", + "\n", + "# Cut out first 10min of filtered data to give filters time to settle\n", + "rms_slice = filtered2[np.where(f_t[1:] > 10*60)[0][0]:]\n", + "rms = np.sqrt(np.mean(np.square(rms_slice)))\n", + "ax1.text(0.5, 0.1, f'RMS (band-pass): {rms*1e3:.3f}mHz', transform=ax1.transAxes, color='white', bbox=bbox, ha='center')\n", + "None" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "chunk_size = 256\n", + "\n", + "with open('filtered_freq.bin', 'wb') as f:\n", + " for chunk in range(0, len(rms_slice), chunk_size):\n", + " out_data = rms_slice[chunk:chunk+chunk_size]\n", + " f.write(struct.pack(f'{len(out_data)}f', *out_data))\n", + " \n", + "with open('raw_freq.bin', 'wb') as f:\n", + " for chunk in range(0, len(f_copy), chunk_size):\n", + " out_data = f_copy[chunk:chunk+chunk_size]\n", + " f.write(struct.pack(f'{len(out_data)}f', *out_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(160118,)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def modulate(sequences, data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/hardware/fw/main.c b/hardware/fw/main.c new file mode 100644 index 0000000..34c838b --- /dev/null +++ b/hardware/fw/main.c @@ -0,0 +1,241 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "global.h" +#include "adc.h" +#include "serial.h" + + +volatile unsigned int sys_time_seconds = 0; +volatile union leds leds; +volatile int32_t gps_1pps_period_sysclk = -1; + +int main(void) { + /* Get GPIOA and SPI1 up to flash status LEDs */ + RCC->AHBENR |= RCC_AHBENR_GPIOAEN; + RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; + + GPIOA->MODER |= + (3<<GPIO_MODER_MODER2_Pos) /* PA2 - LINE_MEAS */ + | (1<<GPIO_MODER_MODER3_Pos) /* PA3 - LED_STB */ + | (1<<GPIO_MODER_MODER4_Pos) /* PA4 - SD_CS */ + | (2<<GPIO_MODER_MODER5_Pos) /* PA5 - SCK */ + | (2<<GPIO_MODER_MODER6_Pos) /* PA6 - MISO */ + | (2<<GPIO_MODER_MODER7_Pos) /* PA7 - MOSI */ + | (2<<GPIO_MODER_MODER9_Pos) /* PA9 - HOST_RX */ + | (2<<GPIO_MODER_MODER10_Pos);/* PA10 - HOST_TX */ + + /* Set shift register IO GPIO output speed */ + GPIOA->OSPEEDR |= + (2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* LED_STB */ + | (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* SD_CS */ + | (2<<GPIO_OSPEEDR_OSPEEDR5_Pos) /* SCK */ + | (2<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* MOSI */ + | (2<<GPIO_OSPEEDR_OSPEEDR9_Pos); /* HOST_RX */ + + GPIOA->AFR[0] = (0<<GPIO_AFRL_AFRL5_Pos) | (0<<GPIO_AFRL_AFRL6_Pos) | (0<<GPIO_AFRL_AFRL7_Pos); + GPIOA->AFR[1] = (1<<8) | (1<<4); + + SPI1->CR1 = + SPI_CR1_SSM + | SPI_CR1_SSI + | SPI_CR1_CPOL + | SPI_CR1_CPHA + | (4<<SPI_CR1_BR_Pos) /* /32 ~1.5MHz */ + | SPI_CR1_MSTR; + SPI1->CR2 = (7<<SPI_CR2_DS_Pos); + SPI1->CR1 |= SPI_CR1_SPE; + *((volatile uint8_t*)&(SPI1->DR)) = 0xff; + + /* Wait for OCXO to settle */ + for (int i=0; i<1000000; i++) + ; + + /* Switch clock to PLL based on OCXO input */ + RCC->CR |= RCC_CR_HSEBYP; + RCC->CR |= RCC_CR_HSEON; + RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; + /* PLL config: 19.44MHz /2 x5 -> 48.6MHz */ + RCC->CFGR |= ((5-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; + RCC->CFGR2 = ((2-1)<<RCC_CFGR2_PREDIV_Pos); + RCC->CR |= RCC_CR_PLLON; + while (!(RCC->CR&RCC_CR_PLLRDY)); + RCC->CFGR |= (2<<RCC_CFGR_SW_Pos); + SystemCoreClockUpdate(); + + /* Start systick */ + SysTick_Config(SystemCoreClock/10); /* 100ms interval */ + NVIC_EnableIRQ(SysTick_IRQn); + NVIC_SetPriority(SysTick_IRQn, 3<<5); + + /* Turn on rest of periphery */ + RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN | RCC_AHBENR_CRCEN; + RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN | RCC_APB2ENR_DBGMCUEN |\ + RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM16EN | RCC_APB2ENR_USART1EN; + RCC->APB1ENR |= RCC_APB1ENR_TIM3EN | RCC_APB1ENR_TIM14EN; + + GPIOB->MODER |= + (2<<GPIO_MODER_MODER1_Pos); /* PB0 - GPS 1pps input */ + GPIOB->AFR[0] = (0<<GPIO_AFRL_AFRL1_Pos); + GPIOB->PUPDR = 2<<GPIO_PUPDR_PUPDR1_Pos; + + /* Configure TIM16 for LED update via SPI */ + TIM16->CR2 = 0; + TIM16->DIER = TIM_DIER_UIE | TIM_DIER_CC1IE; + TIM16->CCMR1 = 0; + TIM16->CCR1 = 32; + TIM16->PSC = 48-1; /* 1us */ + TIM16->ARR = 1000-1; /* 1ms */ + TIM16->CR1 = TIM_CR1_CEN; + NVIC_EnableIRQ(TIM16_IRQn); + + /* Configure TIM14 for GPS 1pps input capture */ + TIM14->CCMR1 = (1<<TIM_CCMR1_CC1S_Pos) | (3<<TIM_CCMR1_IC1F_Pos); + TIM14->CCER = TIM_CCER_CC1E; + TIM14->PSC = 1; + TIM14->ARR = 0xffff; + TIM14->DIER = TIM_DIER_CC1IE | TIM_DIER_UIE; + TIM14->EGR = TIM_EGR_UG; + TIM14->CR1 |= TIM_CR1_CEN; + NVIC_EnableIRQ(TIM14_IRQn); + + adc_init(1000000); + adc_timer_init(243, 200); /* 19.44 MHz / 243 -> 200 kHz; /200 -> 1 kHz */ + + usart_dma_init(); + + while (42) { + /* Do nothing and let the interrupts do all the work. */ + } +} + +void tim14_sr_cc1of(void) {} /* gdb hook */ + +void TIM14_IRQHandler(void) { + static uint32_t gps_1pps_period = 0; + static uint32_t update_inc = 0; + static bool in_sync = false; + + uint32_t sr = TIM14->SR; + if (sr & TIM_SR_CC1OF) { + TIM14->SR &= ~(TIM_SR_CC1IF | TIM_SR_CC1OF); + tim14_sr_cc1of(); + + } + if (sr & TIM_SR_UIF) { + TIM14->SR &= ~TIM_SR_UIF; + if (in_sync) { + gps_1pps_period += update_inc; + if (gps_1pps_period > 30000000) { /* Signal out of range */ + in_sync = false; + gps_1pps_period_sysclk = -1; + gps_1pps_period = (uint32_t)-1; + } + } + update_inc = 0x10000; + } + + if (sr & TIM_SR_CC1IF) { /* CC1 event (GPS 1pps input) */ + /* Don't reset update event: If update event arrives while CC1 event is being processed leave UIF set to process + * update event immediately after return from ISR. */ + uint16_t ccr = TIM14->CCR1; + if (in_sync) { + uint32_t new_period = gps_1pps_period + ccr; + if (new_period < 20000000 || new_period > 30000000) { /* Signal out of range */ + in_sync = false; + gps_1pps_period_sysclk = -1; + gps_1pps_period = (uint32_t)-1; + } else { + if ((sr & TIM_SR_UIF) /* we processed an update event in this ISR */ + && (ccr > 0xc000) /* and the capture happened late in the cycle */ + ) { + gps_1pps_period_sysclk = new_period - 0x10000; + update_inc = 0x10000; + gps_1pps_period = 0x10000 - ccr; + } else { + gps_1pps_period_sysclk = new_period; + update_inc = 0x10000 - ccr; /* remaining cycles in this period */ + gps_1pps_period = 0; + } + leds.pps = 200; /* ms */ + } + } else { + gps_1pps_period = 0; + update_inc = 0x10000 - ccr; /* remaining cycles in this period */ + in_sync = true; + } + + } +} + +void TIM16_IRQHandler(void) { + static int leds_update_counter = 0; + if (TIM16->SR & TIM_SR_UIF) { + TIM16->SR &= ~TIM_SR_UIF; + + uint8_t bits = 0, mask = 1; + for (int i=0; i<8; i++) { + if (leds.arr[i]) { + leds.arr[i]--; + bits |= mask; + } + mask <<= 1; + } + + if (leds_update_counter++ == 10) { + leds_update_counter = 0; + + /* Workaround for SPI hardware bug: Even if configured to 8-bit mode, the SPI will do a 16-bit transfer if the + * data register is accessed through a 16-bit write. Unfortunately, the STMCube register defs define DR as an + * uint16_t, so we have to do some magic here to force an 8-bit write. */ + *((volatile uint8_t*)&(SPI1->DR)) = bits; + GPIOA->BRR = 1<<3; + } + } else { + TIM16->SR &= ~TIM_SR_CC1IF; + GPIOA->BSRR = 1<<3; + } +} + +void NMI_Handler(void) { + asm volatile ("bkpt"); +} + +void HardFault_Handler(void) __attribute__((naked)); +void HardFault_Handler() { + asm volatile ("bkpt"); +} + +void SVC_Handler(void) { + asm volatile ("bkpt"); +} + + +void PendSV_Handler(void) { + asm volatile ("bkpt"); +} + +void SysTick_Handler(void) { + static int n = 0; + if (n++ == 10) { + n = 0; + sys_time_seconds++; + if (gps_1pps_period_sysclk < 0) + leds.pps = 200; /* ms */ + } +} + diff --git a/hardware/fw/main.c.bak b/hardware/fw/main.c.bak new file mode 100644 index 0000000..07d065d --- /dev/null +++ b/hardware/fw/main.c.bak @@ -0,0 +1,162 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "global.h" + +#include "adc.h" + +volatile unsigned int sys_time = 0; +volatile unsigned int sys_time_seconds = 0; + +void TIM1_BRK_UP_TRG_COM_Handler() { + TIM1->SR &= ~TIM_SR_UIF_Msk; +} + +int main(void) { + RCC->CR |= RCC_CR_HSEON; + while (!(RCC->CR&RCC_CR_HSERDY)); + RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; + RCC->CFGR |= ((6-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x6 -> 48.0MHz */ + RCC->CR |= RCC_CR_PLLON; + while (!(RCC->CR&RCC_CR_PLLRDY)); + RCC->CFGR |= (2<<RCC_CFGR_SW_Pos); + SystemCoreClockUpdate(); + SysTick_Config(SystemCoreClock/1000); /* 1ms interval */ + + /* Turn on lots of neat things */ + RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_FLITFEN; + RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN| RCC_APB2ENR_DBGMCUEN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM1EN;; + RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; + + GPIOA->MODER |= + (3<<GPIO_MODER_MODER0_Pos) /* PA0 - Vmeas_A to ADC */ + | (3<<GPIO_MODER_MODER1_Pos) /* PA1 - Vmeas_B to ADC */ + | (1<<GPIO_MODER_MODER2_Pos) /* PA2 - LOAD */ + | (1<<GPIO_MODER_MODER3_Pos) /* PA3 - CH0 */ + | (1<<GPIO_MODER_MODER4_Pos) /* PA4 - CH3 */ + | (0<<GPIO_MODER_MODER5_Pos) /* PA5 - TP1 */ + | (1<<GPIO_MODER_MODER6_Pos) /* PA6 - CH2 */ + | (1<<GPIO_MODER_MODER7_Pos) /* PA7 - CH1 */ + | (0<<GPIO_MODER_MODER9_Pos) /* PA9 - TP2 */ + | (0<<GPIO_MODER_MODER10_Pos);/* PA10 - TP3 */ + + /* Set shift register IO GPIO output speed */ + GPIOA->OSPEEDR |= + (2<<GPIO_OSPEEDR_OSPEEDR2_Pos) /* LOAD */ + | (2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* CH0 */ + | (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* CH3 */ + | (2<<GPIO_OSPEEDR_OSPEEDR6_Pos) /* CH2 */ + | (2<<GPIO_OSPEEDR_OSPEEDR7_Pos); /* CH1 */ + + /* Setup CC1 and CC2. CC2 generates the LED drivers' STROBE, CC1 triggers the IRQ handler */ + TIM1->BDTR = TIM_BDTR_MOE; + TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 */ + TIM1->CCER = TIM_CCER_CC4E; + TIM1->CCR4 = 1; + TIM1->DIER = TIM_DIER_UIE; + + TIM1->PSC = SystemCoreClock/500000 - 1; /* 0.5us/tick */ + TIM1->ARR = 25-1; + /* Preload all values */ + TIM1->EGR |= TIM_EGR_UG; + TIM1->CR1 = TIM_CR1_ARPE; + /* And... go! */ + TIM1->CR1 |= TIM_CR1_CEN; + + void set_outputs(uint8_t val) { + int a=!!(val&1), b=!!(val&2), c=!!(val&4), d=!!(val&8); + GPIOA->ODR &= ~(!a<<3 | !b<<7 | c<<6 | d<<4); + GPIOA->ODR |= a<<3 | b<<7 | !c<<6 | !d<<4; + } + set_outputs(0); + + adc_init(); + + uint8_t out_state = 0x01; +#define DEBOUNCE 100 + int debounce_ctr = 0; + int val_last = 0; + int ctr = 0; +#define RESET 1000 + int reset_ctr = 0; + while (42) { +#define FOO 500000 + if (reset_ctr) + reset_ctr--; + else + set_outputs(0); + + if (debounce_ctr) { + debounce_ctr--; + } else { + int val = !!(GPIOA->IDR & 1); + debounce_ctr = DEBOUNCE; + + if (val != val_last) { + if (val) + set_outputs(out_state & 0xf); + else + set_outputs(out_state >> 4); + reset_ctr = RESET; + val_last = val; + ctr++; + + if (ctr == 100) { + ctr = 0; + out_state = out_state<<1 | out_state>>7; + } + } + } + /* + for (int i=0; i<FOO; i++) ; + set_outputs(0x1); + for (int i=0; i<FOO; i++) ; + set_outputs(0x2); + for (int i=0; i<FOO; i++) ; + set_outputs(0x4); + for (int i=0; i<FOO; i++) ; + set_outputs(0x8); + */ + //for (int i=0; i<8*FOO; i++) ; + //GPIOA->ODR ^= 4; + } +} + +void NMI_Handler(void) { +} + +void HardFault_Handler(void) __attribute__((naked)); +void HardFault_Handler() { + asm volatile ("bkpt"); +} + +void SVC_Handler(void) { +} + + +void PendSV_Handler(void) { +} + +void SysTick_Handler(void) { + static int n = 0; + sys_time++; + if (n++ == 1000) { + n = 0; + sys_time_seconds++; + } +} + diff --git a/hardware/fw/openocd.cfg b/hardware/fw/openocd.cfg new file mode 100644 index 0000000..ce164b7 --- /dev/null +++ b/hardware/fw/openocd.cfg @@ -0,0 +1,17 @@ +telnet_port 4445 +gdb_port 3334 +tcl_port 6667 + +source [find interface/stlink-v2.cfg] +#interface jlink +#interface stlink-v2 +#adapter_khz 10000 +#transport select swd + +#source /usr/share/openocd/scripts/target/stm32f0x.cfg +source [find target/stm32f0x_stlink.cfg] + +init +arm semihosting enable + +#flash bank sysflash.alias stm32f0x 0x00000000 0 0 0 $_TARGETNAME diff --git a/hardware/fw/packet_interface.c b/hardware/fw/packet_interface.c new file mode 100644 index 0000000..099993b --- /dev/null +++ b/hardware/fw/packet_interface.c @@ -0,0 +1,46 @@ + +#include "packet_interface.h" +#include "cobs.h" + +void usart2_isr(void) { + TRACING_SET(TR_HOST_IF_USART_IRQ); + static struct cobs_decode_state host_cobs_state = {0}; + if (USART2_SR & USART_SR_ORE) { /* Overrun handling */ + LOG_PRINTF("USART2 data register overrun\n"); + /* Clear interrupt flag */ + (void)USART2_DR; /* FIXME make sure this read is not optimized out */ + host_packet_length = -1; + TRACING_CLEAR(TR_HOST_IF_USART_IRQ); + return; + } + + uint8_t data = USART2_DR; /* This automatically acknowledges the IRQ */ + + if (host_packet_length) { + LOG_PRINTF("USART2 COBS buffer overrun\n"); + host_packet_length = -1; + TRACING_CLEAR(TR_HOST_IF_USART_IRQ); + return; + } + + ssize_t rv = cobs_decode_incremental(&host_cobs_state, (char *)host_packet_buf, sizeof(host_packet_buf), data); + if (rv == -2) { + LOG_PRINTF("Host interface COBS packet too large\n"); + host_packet_length = -1; + } else if (rv == -3) { + LOG_PRINTF("Got double null byte from host\n"); + } else if (rv < 0) { + LOG_PRINTF("Host interface COBS framing error\n"); + host_packet_length = -1; + } else if (rv > 0) { + host_packet_length = rv; + } /* else just return and wait for next byte */ + TRACING_CLEAR(TR_HOST_IF_USART_IRQ); +} + +void send_packet(struct dma_usart_file *f, const uint8_t *data, size_t len) { + /* ignore return value as putf is blocking and always succeeds */ + (void)cobs_encode_incremental(f, putf, (char *)data, len); + flush(f); +} + diff --git a/hardware/fw/packet_interface.h b/hardware/fw/packet_interface.h new file mode 100644 index 0000000..dbace62 --- /dev/null +++ b/hardware/fw/packet_interface.h @@ -0,0 +1,6 @@ +#ifndef __PACKET_INTERFACE_H__ +#define __PACKET_INTERFACE_H__ + +void send_packet(struct dma_usart_file *f, const uint8_t *data, size_t len); + +#endif diff --git a/hardware/fw/reader.py b/hardware/fw/reader.py new file mode 100644 index 0000000..c60edb7 --- /dev/null +++ b/hardware/fw/reader.py @@ -0,0 +1,30 @@ +#!/usr/bin/env python3 + +import struct + +import sqlite3 + +import serial +from cobs import cobs + +if __name__ == '__main__': + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument('-b', '--baudrate', type=int, default=250000) + parser.add_argument('port') + parser.add_argument('dbfile') + args = parser.parse_args() + + db = sqlite3.connect(args.db) + ser = serial.Serial(args.port, args.baudrate) + + while True: + packet = ser.read_until(b'\0') + try: + packet = cobs.decode(packet) + crc, seq, struct.decode('IBxH', packet[:8]) + + except Exception as e: + print(e) + diff --git a/hardware/fw/scope.gdb b/hardware/fw/scope.gdb new file mode 100644 index 0000000..01366fa --- /dev/null +++ b/hardware/fw/scope.gdb @@ -0,0 +1,12 @@ +target remote 192.168.178.103:3334 +set pagination off +file main.elf +load + +break gdb_dump +command 1 + dump binary value /tmp/scope_dump.bin adc_buf + continue +end + +continue diff --git a/hardware/fw/serial.c b/hardware/fw/serial.c new file mode 100644 index 0000000..ae05fc9 --- /dev/null +++ b/hardware/fw/serial.c @@ -0,0 +1,251 @@ +#include "global.h"
+#include "serial.h"
+#include "cobs.h"
+
+#include <string.h>
+#include <stdarg.h>
+#include <stdlib.h>
+
+volatile struct dma_tx_buf usart_tx_buf;
+
+static uint32_t tx_overruns=0, rx_overruns=0;
+static uint32_t rx_framing_errors=0, rx_protocol_errors=0;
+
+static struct cobs_decode_state cobs_state;
+
+static volatile uint8_t rx_buf[32];
+
+
+static void usart_schedule_dma(void);
+static int usart_putc_nonblocking(uint8_t c);
+
+
+void usart_dma_reset() {
+ usart_tx_buf.xfr_start = -1;
+ usart_tx_buf.xfr_end = 0;
+ usart_tx_buf.wr_pos = 0;
+ usart_tx_buf.wr_idx = 0;
+ usart_tx_buf.xfr_next = 0;
+ usart_tx_buf.wraparound = false;
+ usart_tx_buf.ack = true;
+
+ for (size_t i=0; i<ARRAY_LEN(usart_tx_buf.packet_end); i++)
+ usart_tx_buf.packet_end[i] = -1;
+
+ cobs_decode_incremental_initialize(&cobs_state);
+}
+
+void usart_dma_init() {
+ usart_dma_reset();
+
+ /* Configure DMA 1 Channel 2 to handle uart transmission */
+ DMA1_Channel2->CPAR = (uint32_t)&(USART1->TDR);
+ DMA1_Channel2->CCR = (0<<DMA_CCR_PL_Pos)
+ | DMA_CCR_DIR
+ | (0<<DMA_CCR_MSIZE_Pos) /* 8 bit */
+ | (0<<DMA_CCR_PSIZE_Pos) /* 8 bit */
+ | DMA_CCR_MINC
+ | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
+
+ DMA1_Channel3->CMAR = (uint32_t)&(CRC->DR);
+ DMA1_Channel3->CCR = (1<<DMA_CCR_PL_Pos)
+ | (0<<DMA_CCR_MSIZE_Pos) /* 8 bit */
+ | (0<<DMA_CCR_PSIZE_Pos) /* 8 bit */
+ | DMA_CCR_PINC
+ | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
+
+ /* triggered on transfer completion. We use this to process the ADC data */
+ NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
+ NVIC_SetPriority(DMA1_Channel2_3_IRQn, 2<<5);
+
+ USART1->CR1 = /* 8-bit -> M1, M0 clear */
+ /* OVER8 clear. Use default 16x oversampling */
+ /* CMIF clear */
+ USART_CR1_MME
+ /* WAKE clear */
+ /* PCE, PS clear */
+ | USART_CR1_RXNEIE /* Enable receive interrupt */
+ /* other interrupts clear */
+ | USART_CR1_TE
+ | USART_CR1_RE;
+ /* Set divider for 115.2kBd @48MHz system clock. */
+ //USART1->BRR = 417;
+
+ //USART1->BRR = 48; /* 1MBd */
+ //USART1->BRR = 96; /* 500kBd */
+ USART1->BRR = 192; /* 250kBd */
+ //USART1->BRR = 208; /* 230400 */
+
+ USART1->CR2 = USART_CR2_TXINV | USART_CR2_RXINV;
+
+ USART1->CR3 |= USART_CR3_DMAT; /* TX DMA enable */
+
+ /* Enable receive interrupt */
+ NVIC_EnableIRQ(USART1_IRQn);
+ NVIC_SetPriority(USART1_IRQn, 1<<5);
+
+ /* And... go! */
+ USART1->CR1 |= USART_CR1_UE;
+}
+
+void USART1_IRQHandler() {
+ uint32_t isr = USART1->ISR;
+
+ if (isr & USART_ISR_ORE) {
+ USART1->ICR = USART_ICR_ORECF;
+ rx_overruns++;
+ return;
+ }
+
+ if (isr & USART_ISR_RXNE) {
+ uint8_t c = USART1->RDR;
+
+ int rc = cobs_decode_incremental(&cobs_state, (char *)rx_buf, sizeof(rx_buf), c);
+ if (rc == 0) /* packet still incomplete */
+ return;
+
+ if (rc < 0) {
+ rx_framing_errors++;
+ return;
+ }
+
+ /* A complete frame received */
+ if (rc != 2) {
+ rx_protocol_errors++;
+ return;
+ }
+
+ volatile struct ctrl_pkt *pkt = (volatile struct ctrl_pkt *)rx_buf;
+
+ switch (pkt->type) {
+ case CTRL_PKT_RESET:
+ usart_dma_reset();
+ break;
+
+ case CTRL_PKT_ACK:
+ usart_tx_buf.ack = true;
+ if (!(DMA1_Channel2->CCR & DMA_CCR_EN))
+ usart_schedule_dma();
+ break;
+
+ default:
+ rx_protocol_errors++;
+ }
+ return;
+ }
+}
+
+
+void usart_schedule_dma() {
+ volatile struct dma_tx_buf *buf = &usart_tx_buf;
+
+ ssize_t xfr_start, xfr_end, xfr_len;
+ if (buf->wraparound) {
+ buf->wraparound = false;
+ xfr_start = 0;
+ xfr_len = buf->xfr_end;
+ xfr_end = buf->xfr_end;
+
+ } else if (buf->ack) {
+ if (buf->packet_end[buf->xfr_next] == -1)
+ return; /* Nothing to trasnmit */
+
+ buf->ack = false;
+
+ xfr_start = buf->xfr_end;
+ xfr_end = buf->packet_end[buf->xfr_next];
+ buf->packet_end[buf->xfr_next] = -1;
+ buf->xfr_next = (buf->xfr_next + 1) % ARRAY_LEN(buf->packet_end);
+
+ if (xfr_end > xfr_start) { /* no wraparound */
+ xfr_len = xfr_end - xfr_start;
+
+ } else { /* wraparound */
+ if (xfr_end != 0)
+ buf->wraparound = true;
+ xfr_len = sizeof(buf->data) - xfr_start;
+ }
+
+ } else {
+ /* retransmit */
+ /* First, send a zero to delimit any garbage from the following good packet */
+ USART1->TDR = 0x00;
+
+ xfr_start = buf->xfr_start;
+ xfr_end = buf->xfr_end;
+
+ if (xfr_end > xfr_start) { /* no wraparound */
+ xfr_len = xfr_end - xfr_start;
+
+ } else { /* wraparound */
+ if (xfr_end != 0)
+ buf->wraparound = true;
+ xfr_len = sizeof(buf->data) - xfr_start;
+ }
+
+ leds.error = 250;
+ }
+
+ buf->xfr_start = xfr_start;
+ buf->xfr_end = xfr_end;
+
+ /* initiate transmission of new buffer */
+ DMA1_Channel2->CMAR = (uint32_t)(buf->data + xfr_start);
+ DMA1_Channel2->CNDTR = xfr_len;
+ DMA1_Channel2->CCR |= DMA_CCR_EN;
+}
+
+int usart_putc_nonblocking(uint8_t c) {
+ volatile struct dma_tx_buf *buf = &usart_tx_buf;
+
+ if (buf->wr_pos == buf->xfr_start)
+ return -EBUSY;
+
+ buf->data[buf->wr_pos] = c;
+ buf->wr_pos = (buf->wr_pos + 1) % sizeof(buf->data);
+ return 0;
+}
+
+
+void DMA1_Channel2_3_IRQHandler(void) {
+ /* Transfer complete */
+ DMA1->IFCR |= DMA_IFCR_CTCIF2;
+
+ DMA1_Channel2->CCR &= ~DMA_CCR_EN;
+ if (usart_tx_buf.wraparound)
+ usart_schedule_dma();
+}
+
+/* len is the packet length including headers */
+int usart_send_packet_nonblocking(struct ll_pkt *pkt, size_t pkt_len) {
+
+ if (usart_tx_buf.packet_end[usart_tx_buf.wr_idx] != -1) {
+ /* Find a free slot for this packet */
+ tx_overruns++;
+ return -EBUSY;
+ }
+
+ pkt->pid = usart_tx_buf.wr_idx;
+ pkt->_pad = usart_tx_buf.xfr_next;
+
+ /* make the value this wonky-ass CRC implementation produces match zlib etc. */
+ CRC->CR = CRC_CR_REV_OUT | (1<<CRC_CR_REV_IN_Pos) | CRC_CR_RESET;
+ for (size_t i=offsetof(struct ll_pkt, pid); i<pkt_len; i++)
+ CRC->DR = ((uint8_t *)pkt)[i];
+
+ pkt->crc32 = ~CRC->DR;
+
+ int rc = cobs_encode_usart((int (*)(char))usart_putc_nonblocking, (char *)pkt, pkt_len);
+ if (rc)
+ return rc;
+
+ usart_tx_buf.packet_end[usart_tx_buf.wr_idx] = usart_tx_buf.wr_pos;
+ usart_tx_buf.wr_idx = (usart_tx_buf.wr_idx + 1) % ARRAY_LEN(usart_tx_buf.packet_end);
+
+ leds.usb = 100;
+
+ if (!(DMA1_Channel2->CCR & DMA_CCR_EN))
+ usart_schedule_dma();
+ return 0;
+}
+
diff --git a/hardware/fw/serial.h b/hardware/fw/serial.h new file mode 100644 index 0000000..8cec089 --- /dev/null +++ b/hardware/fw/serial.h @@ -0,0 +1,75 @@ +/*
+ * This file is part of the libusbhost library
+ * hosted at http://github.com/libusbhost/libusbhost
+ *
+ * Copyright (C) 2015 Amir Hammad <amir.hammad@hotmail.com>
+ *
+ *
+ * libusbhost is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this library. If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+#ifndef __SERIAL_H__
+#define __SERIAL_H__
+
+#include <stdint.h>
+#include <stdarg.h>
+#include <errno.h>
+#include <stdbool.h>
+
+#include "global.h"
+
+struct dma_tx_buf {
+ /* The following fields are accessed only from DMA ISR */
+ ssize_t xfr_start; /* Start index of running DMA transfer */
+ ssize_t xfr_end; /* End index of running DMA transfer plus one */
+ bool wraparound;
+ ssize_t xfr_next;
+ bool ack;
+
+
+ /* The following fields are written only from non-interrupt code */
+ ssize_t wr_pos; /* Next index to be written */
+ ssize_t wr_idx;
+ ssize_t packet_end[8];
+
+ /* The following may be accessed by anything */
+ uint8_t data[512];
+};
+
+struct __attribute__((__packed__)) ll_pkt {
+ uint32_t crc32;
+ /* CRC computed over entire packet starting here */
+ uint8_t pid;
+ uint8_t _pad;
+ uint8_t data[];
+};
+
+enum ctrl_pkt_type {
+ CTRL_PKT_RESET = 1,
+ CTRL_PKT_ACK = 2,
+};
+
+struct __attribute__((__packed__)) ctrl_pkt {
+ uint8_t type;
+ uint8_t orig_id;
+};
+
+extern volatile struct dma_tx_buf usart_tx_buf;
+
+void usart_dma_init(void);
+int usart_send_packet_nonblocking(struct ll_pkt *pkt, size_t pkt_len);
+int usart_ack_packet(uint8_t idx);
+
+#endif // __SERIAL_H__
diff --git a/hardware/fw/startup_stm32f030x6.s b/hardware/fw/startup_stm32f030x6.s new file mode 100644 index 0000000..2f0eb42 --- /dev/null +++ b/hardware/fw/startup_stm32f030x6.s @@ -0,0 +1,273 @@ +/**
+ ******************************************************************************
+ * @file startup_stm32f030x6.s
+ * copied from: STM32Cube/Drivers/CMSIS/Device/ST/STM32F0xx/Source/Templates/gcc
+ * @author MCD Application Team
+ * @version V2.3.1
+ * @date 04-November-2016
+ * @brief STM32F030x4/STM32F030x6 devices vector table for Atollic TrueSTUDIO toolchain.
+ * This module performs:
+ * - Set the initial SP
+ * - Set the initial PC == Reset_Handler,
+ * - Set the vector table entries with the exceptions ISR address
+ * - Branches to main in the C library (which eventually
+ * calls main()).
+ * After Reset the Cortex-M0 processor is in Thread mode,
+ * priority is Privileged, and the Stack is set to Main.
+ ******************************************************************************
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ */
+
+ .syntax unified
+ .cpu cortex-m0
+ .fpu softvfp
+ .thumb
+
+.global g_pfnVectors
+.global Default_Handler
+
+/* start address for the initialization values of the .data section.
+defined in linker script */
+.word _sidata
+/* start address for the .data section. defined in linker script */
+.word _sdata
+/* end address for the .data section. defined in linker script */
+.word _edata
+/* start address for the .bss section. defined in linker script */
+.word _sbss
+/* end address for the .bss section. defined in linker script */
+.word _ebss
+
+ .section .text.Reset_Handler
+ .weak Reset_Handler
+ .type Reset_Handler, %function
+Reset_Handler:
+ ldr r0, =_estack
+ mov sp, r0 /* set stack pointer */
+
+/* Copy the data segment initializers from flash to SRAM */
+ movs r1, #0
+ b LoopCopyDataInit
+
+CopyDataInit:
+ ldr r3, =_sidata
+ ldr r3, [r3, r1]
+ str r3, [r0, r1]
+ adds r1, r1, #4
+
+LoopCopyDataInit:
+ ldr r0, =_sdata
+ ldr r3, =_edata
+ adds r2, r0, r1
+ cmp r2, r3
+ bcc CopyDataInit
+ ldr r2, =_sbss
+ b LoopFillZerobss
+/* Zero fill the bss segment. */
+FillZerobss:
+ movs r3, #0
+ str r3, [r2]
+ adds r2, r2, #4
+
+
+LoopFillZerobss:
+ ldr r3, = _ebss
+ cmp r2, r3
+ bcc FillZerobss
+
+/* Call the clock system intitialization function.*/
+ bl SystemInit
+/* Call static constructors */
+// bl __libc_init_array
+/* Call the application's entry point.*/
+ bl main
+
+LoopForever:
+ b LoopForever
+
+
+.size Reset_Handler, .-Reset_Handler
+
+/**
+ * @brief This is the code that gets called when the processor receives an
+ * unexpected interrupt. This simply enters an infinite loop, preserving
+ * the system state for examination by a debugger.
+ *
+ * @param None
+ * @retval : None
+*/
+ .section .text.Default_Handler,"ax",%progbits
+Default_Handler:
+Infinite_Loop:
+ b Infinite_Loop
+ .size Default_Handler, .-Default_Handler
+/******************************************************************************
+*
+* The minimal vector table for a Cortex M0. Note that the proper constructs
+* must be placed on this to ensure that it ends up at physical address
+* 0x0000.0000.
+*
+******************************************************************************/
+ .section .isr_vector,"a",%progbits
+ .type g_pfnVectors, %object
+ .size g_pfnVectors, .-g_pfnVectors
+
+
+g_pfnVectors:
+ .word _estack
+ .word Reset_Handler
+ .word NMI_Handler
+ .word HardFault_Handler
+ .word 0
+ .word 0
+ .word 0
+ .word 0
+ .word 0
+ .word 0
+ .word 0
+ .word SVC_Handler
+ .word 0
+ .word 0
+ .word PendSV_Handler
+ .word SysTick_Handler
+ .word WWDG_IRQHandler /* Window WatchDog */
+ .word 0 /* Reserved */
+ .word RTC_IRQHandler /* RTC through the EXTI line */
+ .word FLASH_IRQHandler /* FLASH */
+ .word RCC_IRQHandler /* RCC */
+ .word EXTI0_1_IRQHandler /* EXTI Line 0 and 1 */
+ .word EXTI2_3_IRQHandler /* EXTI Line 2 and 3 */
+ .word EXTI4_15_IRQHandler /* EXTI Line 4 to 15 */
+ .word 0 /* Reserved */
+ .word DMA1_Channel1_IRQHandler /* DMA1 Channel 1 */
+ .word DMA1_Channel2_3_IRQHandler /* DMA1 Channel 2 and Channel 3 */
+ .word DMA1_Channel4_5_IRQHandler /* DMA1 Channel 4 and Channel 5 */
+ .word ADC1_IRQHandler /* ADC1 */
+ .word TIM1_BRK_UP_TRG_COM_IRQHandler /* TIM1 Break, Update, Trigger and Commutation */
+ .word TIM1_CC_IRQHandler /* TIM1 Capture Compare */
+ .word 0 /* Reserved */
+ .word TIM3_IRQHandler /* TIM3 */
+ .word 0 /* Reserved */
+ .word 0 /* Reserved */
+ .word TIM14_IRQHandler /* TIM14 */
+ .word 0 /* Reserved */
+ .word TIM16_IRQHandler /* TIM16 */
+ .word TIM17_IRQHandler /* TIM17 */
+ .word I2C1_IRQHandler /* I2C1 */
+ .word 0 /* Reserved */
+ .word SPI1_IRQHandler /* SPI1 */
+ .word 0 /* Reserved */
+ .word USART1_IRQHandler /* USART1 */
+ .word 0 /* Reserved */
+ .word 0 /* Reserved */
+ .word 0 /* Reserved */
+ .word 0 /* Reserved */
+
+/*******************************************************************************
+*
+* Provide weak aliases for each Exception handler to the Default_Handler.
+* As they are weak aliases, any function with the same name will override
+* this definition.
+*
+*******************************************************************************/
+
+ .weak NMI_Handler
+ .thumb_set NMI_Handler,Default_Handler
+
+ .weak HardFault_Handler
+ .thumb_set HardFault_Handler,Default_Handler
+
+ .weak SVC_Handler
+ .thumb_set SVC_Handler,Default_Handler
+
+ .weak PendSV_Handler
+ .thumb_set PendSV_Handler,Default_Handler
+
+ .weak SysTick_Handler
+ .thumb_set SysTick_Handler,Default_Handler
+
+ .weak WWDG_IRQHandler
+ .thumb_set WWDG_IRQHandler,Default_Handler
+
+ .weak RTC_IRQHandler
+ .thumb_set RTC_IRQHandler,Default_Handler
+
+ .weak FLASH_IRQHandler
+ .thumb_set FLASH_IRQHandler,Default_Handler
+
+ .weak RCC_IRQHandler
+ .thumb_set RCC_IRQHandler,Default_Handler
+
+ .weak EXTI0_1_IRQHandler
+ .thumb_set EXTI0_1_IRQHandler,Default_Handler
+
+ .weak EXTI2_3_IRQHandler
+ .thumb_set EXTI2_3_IRQHandler,Default_Handler
+
+ .weak EXTI4_15_IRQHandler
+ .thumb_set EXTI4_15_IRQHandler,Default_Handler
+
+ .weak DMA1_Channel1_IRQHandler
+ .thumb_set DMA1_Channel1_IRQHandler,Default_Handler
+
+ .weak DMA1_Channel2_3_IRQHandler
+ .thumb_set DMA1_Channel2_3_IRQHandler,Default_Handler
+
+ .weak DMA1_Channel4_5_IRQHandler
+ .thumb_set DMA1_Channel4_5_IRQHandler,Default_Handler
+
+ .weak ADC1_IRQHandler
+ .thumb_set ADC1_IRQHandler,Default_Handler
+
+ .weak TIM1_BRK_UP_TRG_COM_IRQHandler
+ .thumb_set TIM1_BRK_UP_TRG_COM_IRQHandler,Default_Handler
+
+ .weak TIM1_CC_IRQHandler
+ .thumb_set TIM1_CC_IRQHandler,Default_Handler
+
+ .weak TIM3_IRQHandler
+ .thumb_set TIM3_IRQHandler,Default_Handler
+
+ .weak TIM14_IRQHandler
+ .thumb_set TIM14_IRQHandler,Default_Handler
+
+ .weak TIM16_IRQHandler
+ .thumb_set TIM16_IRQHandler,Default_Handler
+
+ .weak TIM17_IRQHandler
+ .thumb_set TIM17_IRQHandler,Default_Handler
+
+ .weak I2C1_IRQHandler
+ .thumb_set I2C1_IRQHandler,Default_Handler
+
+ .weak SPI1_IRQHandler
+ .thumb_set SPI1_IRQHandler,Default_Handler
+
+ .weak USART1_IRQHandler
+ .thumb_set USART1_IRQHandler,Default_Handler
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+
diff --git a/hardware/fw/stm32_flash.ld b/hardware/fw/stm32_flash.ld new file mode 100644 index 0000000..cba7577 --- /dev/null +++ b/hardware/fw/stm32_flash.ld @@ -0,0 +1,136 @@ +
+ENTRY(Reset_Handler)
+
+MEMORY {
+ FLASH (rx): ORIGIN = 0x08000000, LENGTH = 0x3C00
+ CONFIGFLASH (rw): ORIGIN = 0x08003C00, LENGTH = 0x400
+ RAM (xrw): ORIGIN = 0x20000000, LENGTH = 4K
+}
+
+/* highest address of the user mode stack */
+_estack = 0x20001000;
+
+SECTIONS {
+ /* for Cortex devices, the beginning of the startup code is stored in the .isr_vector section, which goes to FLASH */
+ .isr_vector : {
+ . = ALIGN(4);
+ KEEP(*(.isr_vector)) /* Startup code */
+ . = ALIGN(4);
+ } >FLASH
+
+ /* the program code is stored in the .text section, which goes to Flash */
+ .text : {
+ . = ALIGN(4);
+
+ *(.text) /* normal code */
+ *(.text.*) /* -ffunction-sections code */
+ *(.rodata) /* read-only data (constants) */
+ *(.rodata*) /* -fdata-sections read only data */
+ *(.glue_7) /* TBD - needed ? */
+ *(.glue_7t) /* TBD - needed ? */
+
+ *(.source_tarball)
+
+ /* Necessary KEEP sections (see http://sourceware.org/ml/newlib/2005/msg00255.html) */
+ KEEP (*(.init))
+ KEEP (*(.fini))
+ KEEP (*(.source_tarball))
+
+ . = ALIGN(4);
+ _etext = .;
+ /* This is used by the startup in order to initialize the .data section */
+ _sidata = _etext;
+ } >FLASH
+
+ /*
+ .configflash : {
+ . = ALIGN(0x400);
+ *(.configdata)
+ _econfig = .;
+ } >FLASH
+ */
+
+ /* This is the initialized data section
+ The program executes knowing that the data is in the RAM
+ but the loader puts the initial values in the FLASH (inidata).
+ It is one task of the startup to copy the initial values from FLASH to RAM. */
+ .data : AT ( _sidata ) {
+ . = ALIGN(4);
+ /* This is used by the startup in order to initialize the .data secion */
+ _sdata = . ;
+ _data = . ;
+
+ *(.data)
+ *(.data.*)
+ *(.RAMtext)
+
+ . = ALIGN(4);
+ /* This is used by the startup in order to initialize the .data secion */
+ _edata = . ;
+ } >RAM
+
+ /* This is the uninitialized data section */
+ .bss : {
+ . = ALIGN(4);
+ /* This is used by the startup in order to initialize the .bss secion */
+ _sbss = .;
+ _bss = .;
+
+ *(.bss)
+ *(.bss.*) /* patched by elias - allows the use of -fdata-sections */
+ *(COMMON)
+
+ . = ALIGN(4);
+ /* This is used by the startup in order to initialize the .bss secion */
+ _ebss = . ;
+ } >RAM
+
+ PROVIDE ( end = _ebss);
+ PROVIDE (_end = _ebss);
+
+ __exidx_start = .;
+ __exidx_end = .;
+
+ /* after that it's only debugging information. */
+
+ /* remove the debugging information from the standard libraries */
+/* /DISCARD/ : {
+ libc.a ( * )
+ libm.a ( * )
+ libgcc.a ( * )
+ }*/
+
+ /* Stabs debugging sections. */
+ .stab 0 : { *(.stab) }
+ .stabstr 0 : { *(.stabstr) }
+ .stab.excl 0 : { *(.stab.excl) }
+ .stab.exclstr 0 : { *(.stab.exclstr) }
+ .stab.index 0 : { *(.stab.index) }
+ .stab.indexstr 0 : { *(.stab.indexstr) }
+ .comment 0 : { *(.comment) }
+ /* DWARF debug sections.
+ Symbols in the DWARF debugging sections are relative to the beginning
+ of the section so we begin them at 0. */
+ /* DWARF 1 */
+ .debug 0 : { *(.debug) }
+ .line 0 : { *(.line) }
+ /* GNU DWARF 1 extensions */
+ .debug_srcinfo 0 : { *(.debug_srcinfo) }
+ .debug_sfnames 0 : { *(.debug_sfnames) }
+ /* DWARF 1.1 and DWARF 2 */
+ .debug_aranges 0 : { *(.debug_aranges) }
+ .debug_pubnames 0 : { *(.debug_pubnames) }
+ /* DWARF 2 */
+ .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
+ .debug_abbrev 0 : { *(.debug_abbrev) }
+ .debug_line 0 : { *(.debug_line) }
+ .debug_frame 0 : { *(.debug_frame) }
+ .debug_str 0 : { *(.debug_str) }
+ .debug_loc 0 : { *(.debug_loc) }
+ .debug_macinfo 0 : { *(.debug_macinfo) }
+ /* SGI/MIPS DWARF 2 extensions */
+ .debug_weaknames 0 : { *(.debug_weaknames) }
+ .debug_funcnames 0 : { *(.debug_funcnames) }
+ .debug_typenames 0 : { *(.debug_typenames) }
+ .debug_varnames 0 : { *(.debug_varnames) }
+}
diff --git a/hardware/fw/system_stm32f0xx.c b/hardware/fw/system_stm32f0xx.c new file mode 100644 index 0000000..a43c3d6 --- /dev/null +++ b/hardware/fw/system_stm32f0xx.c @@ -0,0 +1,336 @@ +/**
+ ******************************************************************************
+ * @file system_stm32f0xx.c
+ * copied from: STM32Cube/Drivers/CMSIS/Device/ST/STM32F0xx/Source/Templates
+ * @author MCD Application Team
+ * @version V2.3.1
+ * @date 04-November-2016
+ * @brief CMSIS Cortex-M0 Device Peripheral Access Layer System Source File.
+ *
+ * 1. This file provides two functions and one global variable to be called from
+ * user application:
+ * - SystemInit(): This function is called at startup just after reset and
+ * before branch to main program. This call is made inside
+ * the "startup_stm32f0xx.s" file.
+ *
+ * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
+ * by the user application to setup the SysTick
+ * timer or configure other parameters.
+ *
+ * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
+ * be called whenever the core clock is changed
+ * during program execution.
+ *
+ * 2. After each device reset the HSI (8 MHz) is used as system clock source.
+ * Then SystemInit() function is called, in "startup_stm32f0xx.s" file, to
+ * configure the system clock before to branch to main program.
+ *
+ * 3. This file configures the system clock as follows:
+ *=============================================================================
+ * Supported STM32F0xx device
+ *-----------------------------------------------------------------------------
+ * System Clock source | HSI
+ *-----------------------------------------------------------------------------
+ * SYSCLK(Hz) | 8000000
+ *-----------------------------------------------------------------------------
+ * HCLK(Hz) | 8000000
+ *-----------------------------------------------------------------------------
+ * AHB Prescaler | 1
+ *-----------------------------------------------------------------------------
+ * APB1 Prescaler | 1
+ *-----------------------------------------------------------------------------
+ *=============================================================================
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ */
+
+/** @addtogroup CMSIS
+ * @{
+ */
+
+/** @addtogroup stm32f0xx_system
+ * @{
+ */
+
+/** @addtogroup STM32F0xx_System_Private_Includes
+ * @{
+ */
+
+#include "stm32f0xx.h"
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_TypesDefinitions
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_Defines
+ * @{
+ */
+#if !defined (HSE_VALUE)
+ #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz.
+ This value can be provided and adapted by the user application. */
+#endif /* HSE_VALUE */
+
+#if !defined (HSI_VALUE)
+ #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz.
+ This value can be provided and adapted by the user application. */
+#endif /* HSI_VALUE */
+
+#if !defined (HSI48_VALUE)
+#define HSI48_VALUE ((uint32_t)48000000) /*!< Default value of the HSI48 Internal oscillator in Hz.
+ This value can be provided and adapted by the user application. */
+#endif /* HSI48_VALUE */
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_Variables
+ * @{
+ */
+ /* This variable is updated in three ways:
+ 1) by calling CMSIS function SystemCoreClockUpdate()
+ 2) by calling HAL API function HAL_RCC_GetHCLKFreq()
+ 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
+ Note: If you use this function to configure the system clock there is no need to
+ call the 2 first functions listed above, since SystemCoreClock variable is
+ updated automatically.
+ */
+uint32_t SystemCoreClock = 8000000;
+
+const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
+const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_FunctionPrototypes
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F0xx_System_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Setup the microcontroller system.
+ * Initialize the default HSI clock source, vector table location and the PLL configuration is reset.
+ * @param None
+ * @retval None
+ */
+void SystemInit(void)
+{
+ /* Reset the RCC clock configuration to the default reset state ------------*/
+ /* Set HSION bit */
+ RCC->CR |= (uint32_t)0x00000001U;
+
+#if defined (STM32F051x8) || defined (STM32F058x8)
+ /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE and MCOSEL[2:0] bits */
+ RCC->CFGR &= (uint32_t)0xF8FFB80CU;
+#else
+ /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] and PLLNODIV bits */
+ RCC->CFGR &= (uint32_t)0x08FFB80CU;
+#endif /* STM32F051x8 or STM32F058x8 */
+
+ /* Reset HSEON, CSSON and PLLON bits */
+ RCC->CR &= (uint32_t)0xFEF6FFFFU;
+
+ /* Reset HSEBYP bit */
+ RCC->CR &= (uint32_t)0xFFFBFFFFU;
+
+ /* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
+ RCC->CFGR &= (uint32_t)0xFFC0FFFFU;
+
+ /* Reset PREDIV[3:0] bits */
+ RCC->CFGR2 &= (uint32_t)0xFFFFFFF0U;
+
+#if defined (STM32F072xB) || defined (STM32F078xx)
+ /* Reset USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW, USBSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFCFE2CU;
+#elif defined (STM32F071xB)
+ /* Reset USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFFCEACU;
+#elif defined (STM32F091xC) || defined (STM32F098xx)
+ /* Reset USART3SW[1:0], USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFF0FEACU;
+#elif defined (STM32F030x6) || defined (STM32F030x8) || defined (STM32F031x6) || defined (STM32F038xx) || defined (STM32F030xC)
+ /* Reset USART1SW[1:0], I2C1SW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFFFEECU;
+#elif defined (STM32F051x8) || defined (STM32F058xx)
+ /* Reset USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFFFEACU;
+#elif defined (STM32F042x6) || defined (STM32F048xx)
+ /* Reset USART1SW[1:0], I2C1SW, CECSW, USBSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFFFE2CU;
+#elif defined (STM32F070x6) || defined (STM32F070xB)
+ /* Reset USART1SW[1:0], I2C1SW, USBSW and ADCSW bits */
+ RCC->CFGR3 &= (uint32_t)0xFFFFFE6CU;
+ /* Set default USB clock to PLLCLK, since there is no HSI48 */
+ RCC->CFGR3 |= (uint32_t)0x00000080U;
+#else
+ #warning "No target selected"
+#endif
+
+ /* Reset HSI14 bit */
+ RCC->CR2 &= (uint32_t)0xFFFFFFFEU;
+
+ /* Disable all interrupts */
+ RCC->CIR = 0x00000000U;
+
+}
+
+/**
+ * @brief Update SystemCoreClock variable according to Clock Register Values.
+ * The SystemCoreClock variable contains the core clock (HCLK), it can
+ * be used by the user application to setup the SysTick timer or configure
+ * other parameters.
+ *
+ * @note Each time the core clock (HCLK) changes, this function must be called
+ * to update SystemCoreClock variable value. Otherwise, any configuration
+ * based on this variable will be incorrect.
+ *
+ * @note - The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ *
+ * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
+ *
+ * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
+ *
+ * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
+ * or HSI_VALUE(*) multiplied/divided by the PLL factors.
+ *
+ * (*) HSI_VALUE is a constant defined in stm32f0xx_hal.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ *
+ * (**) HSE_VALUE is a constant defined in stm32f0xx_hal.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * - The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @param None
+ * @retval None
+ */
+void SystemCoreClockUpdate (void)
+{
+ uint32_t tmp = 0, pllmull = 0, pllsource = 0, predivfactor = 0;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ tmp = RCC->CFGR & RCC_CFGR_SWS;
+
+ switch (tmp)
+ {
+ case RCC_CFGR_SWS_HSI: /* HSI used as system clock */
+ SystemCoreClock = HSI_VALUE;
+ break;
+ case RCC_CFGR_SWS_HSE: /* HSE used as system clock */
+ SystemCoreClock = HSE_VALUE;
+ break;
+ case RCC_CFGR_SWS_PLL: /* PLL used as system clock */
+ /* Get PLL clock source and multiplication factor ----------------------*/
+ pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
+ pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
+ pllmull = ( pllmull >> 18) + 2;
+ predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1;
+
+ if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
+ {
+ /* HSE used as PLL clock source : SystemCoreClock = HSE/PREDIV * PLLMUL */
+ SystemCoreClock = (HSE_VALUE/predivfactor) * pllmull;
+ }
+#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
+ else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
+ {
+ /* HSI48 used as PLL clock source : SystemCoreClock = HSI48/PREDIV * PLLMUL */
+ SystemCoreClock = (HSI48_VALUE/predivfactor) * pllmull;
+ }
+#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F091xC || STM32F098xx */
+ else
+ {
+#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) \
+ || defined(STM32F078xx) || defined(STM32F071xB) || defined(STM32F072xB) \
+ || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC)
+ /* HSI used as PLL clock source : SystemCoreClock = HSI/PREDIV * PLLMUL */
+ SystemCoreClock = (HSI_VALUE/predivfactor) * pllmull;
+#else
+ /* HSI used as PLL clock source : SystemCoreClock = HSI/2 * PLLMUL */
+ SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
+#endif /* STM32F042x6 || STM32F048xx || STM32F070x6 ||
+ STM32F071xB || STM32F072xB || STM32F078xx || STM32F070xB ||
+ STM32F091xC || STM32F098xx || STM32F030xC */
+ }
+ break;
+ default: /* HSI used as system clock */
+ SystemCoreClock = HSI_VALUE;
+ break;
+ }
+ /* Compute HCLK clock frequency ----------------*/
+ /* Get HCLK prescaler */
+ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
+ /* HCLK clock frequency */
+ SystemCoreClock >>= tmp;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+
diff --git a/hardware/fw/test.py b/hardware/fw/test.py new file mode 100644 index 0000000..cb243a5 --- /dev/null +++ b/hardware/fw/test.py @@ -0,0 +1,41 @@ +#!/usr/bin/env python3 + +import serial +import time + +#ser = serial.Serial('/dev/serial/by-id/usb-1a86_USB2.0-Serial-if00-port0', 230400) +ser = serial.Serial('/dev/serial/by-id/usb-Silicon_Labs_CP2102_USB_to_UART_Bridge_Controller_0001-if00-port0', 250000) +#while True: +# ser.write(bytes(range(256))) +start = time.time() + +last_val = None +run = 0 +total_errors = 0 +rx_bytes = 0 +last_print = time.time() +while True: + bytes = ser.read(256) + for byte in bytes: + if last_val is not None and byte != (last_val + 1) % 256: + if run > 0: + print(f'{time.time()-start:>8.3f} {run} {last_val:02x} {byte:02x}') + run = 0 + total_errors += 1 + else: + run += 1 + rx_bytes += 1 + + if time.time() - last_print > 5: + last_print = time.time() + print(f'{time.time()-start:>8.3f} {run} [all good] err={total_errors}@rx={rx_bytes}B', + f'(rate 1/{rx_bytes/total_errors:.5g})' if total_errors > 0 else 'rate unknown') + last_val = byte + +#while True: +# data = ser.read_until(b'\0') +# print(f'{time.time()-start:>8.3f} {len(data)}') + +# while True: +# data = ser.read(256) +# print('YES' if b'\0' in data else 'NO ', data) diff --git a/hardware/fw/tools/gen_cmsis_exports.py b/hardware/fw/tools/gen_cmsis_exports.py new file mode 100644 index 0000000..ba3422b --- /dev/null +++ b/hardware/fw/tools/gen_cmsis_exports.py @@ -0,0 +1,30 @@ +#!/usr/bin/env python3 +import re +import os + +if __name__ == '__main__': + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument('cmsis_device_header', nargs='+', type=argparse.FileType('rb')) + args = parser.parse_args() + + print('#ifndef __GENERATED_CMSIS_HEADER_EXPORTS__') + print('#define __GENERATED_CMSIS_HEADER_EXPORTS__') + print() + for header in args.cmsis_device_header: + lines = header.readlines() + name = os.path.basename(header.name) + print('#include <{}>'.format(name)) + print() + + print('/* {} */'.format(name)) + for l in lines: + match = re.match(b'^#define (\w+)\s+\W*(\w+_TypeDef|\w+_Type).*$', l) + if match: + inst, typedef = match.groups() + inst, typedef = inst.decode(), typedef.decode() + print('{} *{} = {};'.format(typedef, inst.lower(), inst)) + print() + print('#endif//__GENERATED_CMSIS_HEADER_EXPORTS__') + diff --git a/hardware/fw/tw_test.c b/hardware/fw/tw_test.c new file mode 100644 index 0000000..eb41dbe --- /dev/null +++ b/hardware/fw/tw_test.c @@ -0,0 +1,450 @@ +#include <errno.h> +#include <sys/ioctl.h> +#include <asm/termbits.h> +#include <fcntl.h> +#include <stdbool.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <unistd.h> +#include <stdint.h> +#include <dirent.h> +#include <sys/types.h> +#include <assert.h> +#include <sys/epoll.h> +#include <time.h> + +#include <sqlite3.h> + +#include <zlib.h> + +int set_interface_attribs (int fd, int baudrate) { + struct termios2 tio; + memset (&tio, 0, sizeof(tio)); + if (ioctl (fd, TCGETS2, &tio) != 0) { + fprintf(stderr, "Could not request termios for given port\n"); + return -1; + } + + /* FIXME set baudrate */ + + tio.c_cflag = (tio.c_cflag & ~CSIZE) | CS8; /* 8 bit */ + /* disable IGNBRK for mismatched speed tests; otherwise receive break as \000 chars */ + tio.c_iflag &= ~IGNBRK; /* disable break processing */ + tio.c_lflag = 0; /* no signaling chars, no echo, no canonical processing */ + tio.c_oflag = 0; /* no remapping, no delays */ + + tio.c_iflag &= ~(IXON | IXOFF | IXANY); /* shut off xon/xoff ctrl */ + + tio.c_cflag |= (CLOCAL | CREAD);/* ignore modem controls, enable reading */ + tio.c_cflag &= ~(PARENB | PARODD); /* no parity */ + tio.c_cflag &= ~CSTOPB; + tio.c_cflag &= ~CRTSCTS; + + tio.c_cflag &= ~(CBAUD | CBAUDEX); + tio.c_cflag |= BOTHER; + tio.c_ospeed = baudrate; + tio.c_cflag &= ~((CBAUD | CBAUDEX) << IBSHIFT); + tio.c_cflag |= (B0 << IBSHIFT); /* same as output baudrate */ + + tio.c_cc[VMIN] = 0; /* non-blocking mode */ + tio.c_cc[VTIME] = 10; /* 1000ms seconds read timeout */ + + if (ioctl (fd, TCSETS2, &tio)) { + fprintf(stderr, "Could not set serial port attributes: Error %d in tcsetattr (\"%s\")\n", errno, strerror(errno)); + return -1; + } + return 0; +} + +ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen) { + size_t p = 1; + size_t c = (unsigned char)src[0]; + if (c == 0) + return -5; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ + + while (p < srclen && src[p]) { + char val; + c--; + + if (c == 0) { + c = (unsigned char)src[p]; + val = 0; + } else { + val = src[p]; + } + + if (p > dstlen) + return -4; /* Destination buffer too small */ + dst[p-1] = val; + p++; + } + + if (p == srclen) + return -2; /* Invalid framing. The terminating null byte should always be present in the input buffer. */ + + if (c != 1) + return -3; /* Invalid framing. The skip counter does not hit the end of the frame. */ + + return p-1; +} + +int cobs_encode(char *dst, char *src, size_t srclen) { + if (srclen > 254) + return -1; + + size_t p = 0; + while (p <= srclen) { + + char val; + if (p != 0 && src[p-1] != 0) { + val = src[p-1]; + + } else { + size_t q = p; + while (q < srclen && src[q] != 0) + q++; + val = (char)q-p+1; + } + + + *dst++ = val; + p++; + } + + *dst++ = 0; + + return 0; +} + +void print_usage(char *prog) { + fprintf(stderr, "Usage: %s [-p /dev/serial/some_port] [-b baudrate] dbfile.sqilte3\n", prog); +} + +void hexdump(const void* data, size_t size) { + char ascii[17]; + size_t i, j; + ascii[16] = '\0'; + for (i = 0; i < size; ++i) { + printf("%02X ", ((unsigned char*)data)[i]); + if (((unsigned char*)data)[i] >= ' ' && ((unsigned char*)data)[i] <= '~') { + ascii[i % 16] = ((unsigned char*)data)[i]; + } else { + ascii[i % 16] = '.'; + } + if ((i+1) % 8 == 0 || i+1 == size) { + printf(" "); + if ((i+1) % 16 == 0) { + printf("| %s \n", ascii); + } else if (i+1 == size) { + ascii[(i+1) % 16] = '\0'; + if ((i+1) % 16 <= 8) { + printf(" "); + } + for (j = (i+1) % 16; j < 16; ++j) { + printf(" "); + } + printf("| %s \n", ascii); + } + } + } +} + +int main(int argc, char *argv[]) { + + int opt; + int baudrate = 250000; + char *endptr = NULL; + char *port = NULL; + char *dbfile = NULL; + while ((opt = getopt(argc, argv, "p:b:")) != -1) { + switch (opt) { + case 'p': + port = optarg; + break; + case 'b': + baudrate = strtol(optarg, &endptr, 10); + if (errno == ERANGE || endptr == NULL || *endptr != '\0') { + fprintf(stderr, "Invalid baudrate \"%s\"\n", optarg); + print_usage(argv[0]); + } + break; + default: + print_usage(argv[0]); + exit(EXIT_FAILURE); + } + } + + if (port == NULL) { + DIR *le_dir = opendir("/dev/serial/by-id"); + if (le_dir == NULL) { + fprintf(stderr, "No serial port given and could not find any in /dev/serial\n"); + exit(EXIT_FAILURE); + + } + + struct dirent *de; + while ((de = readdir(le_dir))) { + if (de == NULL) { + fprintf(stderr, "No serial port given and could not find any in /dev/serial\n"); + exit(EXIT_FAILURE); + } + + if (!strncmp(de->d_name, ".", sizeof(de->d_name)) || + !strncmp(de->d_name, "..", sizeof(de->d_name))) + continue; + + if (port != NULL) { + fprintf(stderr, "No serial port given and found multiple candidates in /dev/serial\n"); + exit(EXIT_FAILURE); + } + + const char *prefix = "/dev/serial/by-id/"; + port = malloc(strlen(prefix) + sizeof(de->d_name) + 1); + if (port == NULL) { + fprintf(stderr, "Could not allocate memory\n"); + exit(EXIT_FAILURE); + } + strcpy(port, prefix); + strncat(port, de->d_name, sizeof(de->d_name)); + } + fprintf(stderr, "No port given, defaulting to %s\n", port); + closedir(le_dir); + } + + if (optind != argc - 1) { + fprintf(stderr, "Too few arguments\n"); + print_usage(argv[0]); + exit(EXIT_FAILURE); + } + + dbfile = argv[optind]; + printf("Using database file %s\n", dbfile); + fflush(stdout); + + int fd = open(port, O_RDWR|O_NOCTTY|O_SYNC); + if (fd < 0) { + fprintf(stderr, "Cannot open serial port: %s\n", strerror(errno)); + exit(EXIT_FAILURE); + } + + if (set_interface_attribs (fd, baudrate)) + exit(EXIT_FAILURE); + + sqlite3 *db; + if (sqlite3_open(dbfile, &db) != SQLITE_OK) { + fprintf(stderr, "Cannot open database: %s\n", sqlite3_errmsg(db)); + sqlite3_close(db); + exit(EXIT_FAILURE); + } + + char *errmsg; + if (sqlite3_exec(db, + "CREATE TABLE IF NOT EXISTS measurements (rx_time INTEGER, tx_seq INTEGER, rx_seq INTEGER, data BLOB);", + NULL, NULL, &errmsg) != SQLITE_OK) { + fprintf(stderr, "Error initializing databse: %s\n", errmsg); + sqlite3_close(db); + exit(EXIT_FAILURE); + } + + const char *insert_sql = "INSERT INTO measurements VALUES (?, ?, ?, ?)"; + sqlite3_stmt *insert_stmt; + if (sqlite3_prepare_v2(db, insert_sql, strlen(insert_sql), &insert_stmt, NULL) != SQLITE_OK) { + fprintf(stderr, "Error compiling SQL: %s\n", sqlite3_errmsg(db)); + sqlite3_close(db); + exit(EXIT_FAILURE); + } + + char buf [1024]; + int in_sync = 0, wpos = 0; + struct __attribute__((__packed__)) { + uint32_t crc; + uint8_t pid; + uint8_t _pad; + uint16_t seq; + uint16_t data[32]; + } packet; + struct __attribute__((__packed__)) { + uint8_t type; + uint8_t pid; + } wpacket; + char wbuf[4]; + + int epollfd = epoll_create1(0); + if (epollfd < 0) + goto epoll_err; + + #define MAX_EVENTS 10 + struct epoll_event ev, events[MAX_EVENTS]; + ev.events = EPOLLIN; + ev.data.fd = fd; + if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) < 0) + goto epoll_err; + + wpacket.type = 1; + wpacket.pid = 0; + cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); + write(fd, wbuf, sizeof(wbuf)); + + /* FIXME begin debug code */ + for (int i=0; i<32; i++) { + wpacket.type = 2; + wpacket.pid = packet.pid; + cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); + write(fd, wbuf, sizeof(wbuf)); + usleep(20); + } + /* FIXME end debug code */ + + int current_seq = -1; + uint64_t local_seq = 0; + while (23) { + int nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1); + if (nfds == -1) + goto epoll_err; + + if (nfds == 0) + continue; + + ssize_t n = read(fd, buf+wpos, sizeof(buf)-wpos); + printf("--- read wpos=%d n=%ld\n", wpos, n); + hexdump(buf+wpos, n); + if (n<0) { + if (errno == EAGAIN || errno == EINTR) + continue; + + fprintf(stderr, "Error reading from port: %s\n", strerror(errno)); + goto loop_err; + } + //printf("--- debug: read n=%d bytes at wpos=%d\n", n, wpos); + //fflush(stdout); + wpos += n; + + while (23) { + void *first_nul = memchr(buf, 0, wpos) ; + ssize_t first_nul_offx = first_nul - (void*)buf; + ssize_t remaining = wpos - first_nul_offx; + + if (!in_sync) { + if (first_nul) { + memmove(buf, first_nul+1, remaining-1); + wpos = remaining-1; + in_sync = 1; + continue; + + } else { + wpos = 0; + break; + } + } + + if (!first_nul) + break; + + printf("--- debug: first_nul=%p (idx=%ld) wpos=%d remaining=%ld\n", first_nul, first_nul_offx, wpos, remaining); + hexdump(buf, 80); + + int rc = cobs_decode((char *)&packet, sizeof(packet), buf, wpos); + if (rc < 0) { + printf("Framing error: rc=%d\n", rc); + goto it_err; + } + + /* Use zlib to calculate CRC32. The STM32 code calculates the CRC byte-wise, so we emulate this here. */ + uint32_t our_crc = 0; + if (rc > 0) { + uint8_t buf[4] = {0}; + for (int i=4; i<rc; i++) { + buf[3] = ((uint8_t *)&packet)[i]; + our_crc = crc32(our_crc, buf, sizeof(buf)); + } + } + + bool error = false; + /* Check CRC */ + if (our_crc != packet.crc) { + printf("CRC mismatch: seq=%d packet=%08x computed=%08x\n", packet.pid, packet.crc, our_crc); + error = true; + } + + /* Check device sequence number */ + int last_seq = current_seq; + int predicted_seq = (last_seq+1) % 0xffff; + if (!error) + current_seq = packet.seq; + if (last_seq >= 0 && packet.seq != predicted_seq) { + printf("SEQ mismatch: packet=%d computed=%d\n", packet.seq, predicted_seq); + error = true; + } + + if (error) + goto it_err; + + /* Write to database */ + struct timespec ts; + if (clock_gettime(CLOCK_REALTIME, &ts)) { + fprintf(stderr, "Error getting current wall-clock time: %s\n", strerror(errno)); + goto loop_err; + } + uint64_t timestamp = ts.tv_sec*1000 + ts.tv_nsec/1000000; + + if (sqlite3_bind_int(insert_stmt, 1, timestamp) != SQLITE_OK) + goto write_err; + + if (sqlite3_bind_int(insert_stmt, 2, packet.seq) != SQLITE_OK) + goto write_err; + + if (sqlite3_bind_int(insert_stmt, 3, local_seq) != SQLITE_OK) + goto write_err; + + if (sqlite3_bind_blob(insert_stmt, 4, packet.data, sizeof(packet.data), SQLITE_STATIC) != SQLITE_OK) + goto write_err; + + while ((rc = sqlite3_step(insert_stmt)) == SQLITE_BUSY) + ; + if (rc != SQLITE_DONE) + goto write_err; + + if (sqlite3_reset(insert_stmt) != SQLITE_OK) + goto write_err; + + if (sqlite3_clear_bindings(insert_stmt) != SQLITE_OK) + goto write_err; + + local_seq++; + + printf("OK: seq=%d crc=%08x\n", current_seq, packet.crc); + + /* send ACK reply */ + wpacket.type = 2; + wpacket.pid = packet.pid; + cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); + write(fd, wbuf, sizeof(wbuf)); + +it_err: + /* Fixup buffer for next iteration */ + if (remaining-1 > 0) { + printf(" ---memmove(buf=%p, first_nul+1=%p, remaining-1=%ld);-->\n", buf, first_nul+1, remaining-1); + memmove(buf, first_nul+1, remaining-1); + } + //hexdump(buf, 80); + fflush(stdout); + printf("--- continuing wpos=%d->%d\n", wpos, (int)(remaining-1)); + wpos = remaining-1; + } + } + + return 0; + +write_err: + fprintf(stderr, "Error writing to database: %s\n", sqlite3_errmsg(db)); + sqlite3_close(db); + return EXIT_FAILURE; + +epoll_err: + fprintf(stderr, "epoll error: %s\n", strerror(errno)); + +loop_err: + sqlite3_close(db); + return EXIT_FAILURE; +} diff --git a/hardware/fw/tw_test.py b/hardware/fw/tw_test.py new file mode 100644 index 0000000..e329abd --- /dev/null +++ b/hardware/fw/tw_test.py @@ -0,0 +1,139 @@ +#!/usr/bin/env python3 + +import os +from time import time +from binascii import hexlify +import enum +import struct +import zlib +import sys +import sqlite3 + +import serial +from cobs import cobs + + +class CtrlPacketTypes(enum.Enum): + RESET = 1 + ACK = 2 + RETRANSMIT = 3 + +def unpack_head(fmt, data): + split = struct.calcsize(fmt) + return [ *struct.unpack(fmt, data[:split]), data[split:] ] + +def ctrl_packet(ptype, pid=0): + return cobs.encode(struct.pack('BB', ptype.value, pid)) + b'\0' + +ctrl_reset = lambda: ctrl_packet(CtrlPacketTypes.RESET) +ctrl_ack = lambda pid: ctrl_packet(CtrlPacketTypes.ACK, pid) +ctrl_retransmit = lambda pid: ctrl_packet(CtrlPacketTypes.RETRANSMIT, pid) + +if __name__ == '__main__': + import argparse + parser = argparse.ArgumentParser() + + parser.add_argument('-b', '--baudrate', type=int, default=250000) + parser.add_argument('port', nargs='?', default=None) + parser.add_argument('dbfile') + args = parser.parse_args() + + if args.port is None: + try: + candidate, = os.listdir('/dev/serial/by-id') + args.port = os.path.join('/dev/serial/by-id', candidate) + print(f'No port given, guessing {args.port}') + + except: + print('No port given and could not guess port. Exiting.') + sys.exit(1) + + ser = serial.Serial(args.port, args.baudrate, timeout=1.0) + db = sqlite3.connect(args.dbfile) + db.execute('CREATE TABLE IF NOT EXISTS measurements (run_id INTEGER, rx_ts INTEGER, seq INTEGER, data BLOB)') + db.execute('''CREATE TABLE IF NOT EXISTS errors ( + run_id INTEGER, + rx_ts INTEGER, + type TEXT, + seq INTEGER, + pid INTEGER, + pid_expected INTEGER, + crc32 INTEGER, + crc32_expected INTEGER, + data BLOB)''') + run_id, = db.execute('SELECT IFNULL(MAX(run_id), -1) + 1 FROM measurements').fetchone() + + ser.flushInput() + ser.write(ctrl_reset()) + ser.flushOutput() + + last_pid = None + lines_written = 0 + cur = db.cursor() + capture_start = time() + while True: + #ser.write(cobs.encode(b'\x01\xff') + b'\0') + data = ser.read_until(b'\0') + for data in data.split(b'\0')[:-1]: # data always ends on \0 due to read_until, so split off the trailing empty bytes() + try: + if not data: + #print(f'{time():>7.3f} Timeout: resetting') + #ser.write(cobs.encode(b'\x01\xff') + b'\0') # reset + ser.write(ctrl_ack(0)) # FIXME delet this + cur.execute('INSERT INTO errors(run_id, rx_ts, type) VALUES (?, ?, "retransmission")', + (run_id, int(time()*1000))) + continue + + crc32, payload = unpack_head('I', cobs.decode(data)) + pid, seq, data = unpack_head('xBH', payload) + ts = time() + + # Calculate byte-wise CRC32 + our_crc = zlib.crc32(bytes(b for x in payload for b in (0, 0, 0, x))) + #log.append((time(), seq, crc32, our_crc, pid, data)) + bars = '\u2581\u2582\u2583\u2584\u2585\u2586\u2587\u2588' + sparkline = ''.join(bars[int(x/4096*8)] for x in struct.unpack('<32H', data)) + print(f'\033[38;5;249m{ts-capture_start:>10.3f}', + f'\033[94m{seq:05d}', + f'\033[38;5;243m{crc32:08x}', + f'\033[38;5;243m{our_crc:08x}', + f'\033[38;5;243m{pid}', + f'\033[0m{hexlify(data).decode()}', + f'\033[94m{sparkline}\033[0m', end='') + + error = False + suppress_ack = False + if crc32 != our_crc: + print(' \033[1;91mCRC ERROR\033[0m', end='') + suppress_ack = True + error = True + + if last_pid is not None and pid != (last_pid+1)%8: + print(' \033[1;93mPID ERROR\033[0m', end='') + error = True + else: + last_pid = pid + + if not suppress_ack: + ser.write(ctrl_ack(pid)) + ser.flushOutput() + + if not suppress_ack: + cur.execute('INSERT INTO measurements VALUES (?, ?, ?, ?)', (run_id, int(ts*1000), seq, data)) + if error: + cur.execute('INSERT INTO errors VALUES (?, ?, "pid", ?, ?, ?, ?, ?, ?)', + (run_id, int(ts*1000), seq, pid, (last_pid+1)%8, crc32, our_crc, data)) + + print() + lines_written += 1 + if lines_written == 80: + lines_written = 0 + print('\033[2J\033[H', end='') + delta = ts-capture_start + print(f'\033[7mRun {run_id}, capturing for {delta//3600//24:> 3.0f}:{delta//3600%24:02.0f}:{delta//60%60:02.0f}:{delta%60:06.3f}\033[0m') + db.commit() + + except Exception as e: + print(e, len(data)) + ser.write(ctrl_ack(0)) # FIXME delet this + |