diff options
author | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2021-04-09 18:38:02 +0200 |
---|---|---|
committer | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2021-04-09 18:38:57 +0200 |
commit | 50998fcfb916ae251309bd4b464f2c122e8cb30d (patch) | |
tree | 4ecf7a7443b75ab51c4dc0c0fc9289342dc7d6a0 /gm_platform/fw | |
parent | 312fee491cfab436d52db4b6265107e20f3e1293 (diff) | |
download | master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.gz master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.tar.bz2 master-thesis-50998fcfb916ae251309bd4b464f2c122e8cb30d.zip |
Repo re-org
Diffstat (limited to 'gm_platform/fw')
28 files changed, 0 insertions, 7578 deletions
diff --git a/gm_platform/fw/.gitignore b/gm_platform/fw/.gitignore deleted file mode 100644 index 0a0c26e..0000000 --- a/gm_platform/fw/.gitignore +++ /dev/null @@ -1,6 +0,0 @@ -*.expand -*.map -*.lst -*.hex -*.elf -*.bin diff --git a/gm_platform/fw/Makefile b/gm_platform/fw/Makefile deleted file mode 100644 index 77b2a09..0000000 --- a/gm_platform/fw/Makefile +++ /dev/null @@ -1,111 +0,0 @@ -# Megumin LED display firmware -# Copyright (C) 2018 Sebastian Götte <code@jaseg.net> -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see <http://www.gnu.org/licenses/>. - -CUBE_PATH ?= $(wildcard ~)/resource/STM32CubeF0 -CMSIS_PATH ?= $(CUBE_PATH)/Drivers/CMSIS -CMSIS_DEV_PATH ?= $(CMSIS_PATH)/Device/ST/STM32F0xx -HAL_PATH ?= $(CUBE_PATH)/Drivers/STM32F0xx_HAL_Driver - -MAC_ADDR ?= 0xdeadbeef - -CC := arm-none-eabi-gcc -LD := arm-none-eabi-ld -OBJCOPY := arm-none-eabi-objcopy -OBJDUMP := arm-none-eabi-objdump -SIZE := arm-none-eabi-size - -CFLAGS = -g -Wall -Wextra -std=gnu11 -O0 -fdump-rtl-expand -CFLAGS += -mlittle-endian -mcpu=cortex-m0 -march=armv6-m -mthumb -#CFLAGS += -ffunction-sections -fdata-sections -LDFLAGS = -nostartfiles -#LDFLAGS += -specs=rdimon.specs -DSEMIHOSTING -LDFLAGS += -Wl,-Map=main.map -nostdlib -#LDFLAGS += -Wl,--gc-sections -LIBS = -lgcc -#LIBS += -lrdimon - -# Technically we're using an STM32F030F4, but apart from the TSSOP20 package that one is largely identical to the -# STM32F030*6 and there is no separate device header provided for it, so we're faking a *6 device here. This is -# even documented in stm32f0xx.h. Thanks ST! -CFLAGS += -DSTM32F030x6 -DHSE_VALUE=19440000 - -LDFLAGS += -Tstm32_flash.ld -CFLAGS += -I$(CMSIS_DEV_PATH)/Include -I$(CMSIS_PATH)/Include -I$(HAL_PATH)/Inc -Iconfig -Wno-unused -I../common -LDFLAGS += -L$(CMSIS_PATH)/Lib/GCC -larm_cortexM0l_math - -################################################### - -.PHONY: program clean - -all: main.elf - -.clang: - echo flags = $(CFLAGS) > .clang - -cmsis_exports.c: $(CMSIS_DEV_PATH)/Include/stm32f030x6.h $(CMSIS_PATH)/Include/core_cm0.h - python3 tools/gen_cmsis_exports.py $^ > $@ - -%.o: %.c - $(CC) -c $(CFLAGS) -o $@ $^ -# $(CC) -E $(CFLAGS) -o $(@:.o=.pp) $^ - -%.o: %.s - $(CC) -c $(CFLAGS) -o $@ $^ -# $(CC) -E $(CFLAGS) -o $(@:.o=.pp) $^ - -%.dot: %.elf - r2 -a arm -qc 'aa;agC' $< 2>/dev/null >$@ - -sources.tar.xz: main.c Makefile - tar -caf $@ $^ - -# don't ask... -sources.tar.xz.zip: sources.tar.xz - zip $@ $^ - -sources.c: sources.tar.xz.zip - xxd -i $< | head -n -1 | sed 's/=/__attribute__((section(".source_tarball"))) =/' > $@ - -main.elf: main.c adc.c serial.c cobs.c startup_stm32f030x6.s system_stm32f0xx.c $(HAL_PATH)/Src/stm32f0xx_ll_utils.c base.c cmsis_exports.c - $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS) - $(OBJCOPY) -O ihex $@ $(@:.elf=.hex) - $(OBJCOPY) -O binary $@ $(@:.elf=.bin) - $(OBJDUMP) -St $@ >$(@:.elf=.lst) - $(SIZE) $@ - -program: main.elf openocd.cfg - openocd -f openocd.cfg -c "program $< verify reset exit" - -8b10b_test_encode: 8b10b_test_encode.c 8b10b.c - gcc -o $@ $^ - -8b10b_test_decode: 8b10b_test_decode.c 8b10b.c - gcc -o $@ $^ - -protocol_test: protocol.c protocol_test.c - gcc -o $@ -O0 -Wall -Wextra -g -I../common $^ - -clean: - rm -f **.o - rm -f main.elf main.hex main.bin main.map main.lst - rm -f **.expand - rm -f cmsis_exports.c - rm -f sources.tar.xz - rm -f sources.tar.xz.zip - rm -f sources.c - rm -f *.dot - rm -f protocol_test - diff --git a/gm_platform/fw/Scope.ipynb b/gm_platform/fw/Scope.ipynb deleted file mode 100644 index 82898fd..0000000 --- a/gm_platform/fw/Scope.ipynb +++ /dev/null @@ -1,906 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt\n", - "%matplotlib notebook\n", - "import numpy as np\n", - "import struct\n", - "import math" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def plot_data(offx=0, end=-1, signed=False, channels=1):\n", - " with open('/tmp/scope_dump.bin', 'rb') as f:\n", - " raw_data = f.read()\n", - " data = struct.unpack(f'<{len(raw_data)//2}{\"h\" if signed else \"H\"}', raw_data)\n", - " \n", - " fig, axs = plt.subplots(channels*2, 1, squeeze=False, sharex=True, figsize=(10, 5))\n", - " axs = axs.flatten()\n", - " for i, (ax_t, ax_f) in enumerate(zip(axs[0::2], axs[1::2])):\n", - " le_slice = data[offx:][:end][i::channels]\n", - " ax_t.plot(np.linspace(0, len(le_slice)/1000, len(le_slice)),\n", - " [math.nan if x==-255 else x for x in le_slice])\n", - " ax_t.grid() \n", - " \n", - " ax_f.specgram(le_slice, Fs=1000)\n", - " ax_f.grid()\n", - " \n", - " return data" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"1000\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data = plot_data(offx=4, signed=True, channels=1)\n", - "#print(''.join(str(x) for x in data[4:][3::4]))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] No such file or directory: '/tmp/foo'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-32-d8e3fa510bf1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mplotdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mdelta\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mdelta\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplotdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mplot_avg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m<ipython-input-32-d8e3fa510bf1>\u001b[0m in \u001b[0;36mplot_avg\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mplot_avg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/tmp/foo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mvals\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrombuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'uint16'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/tmp/foo'" - ] - } - ], - "source": [ - "import random, struct, numpy as np\n", - "\n", - "def plot_avg():\n", - " with open('/tmp/foo', 'rb') as f:\n", - " vals = np.frombuffer(f.read(), dtype='uint16')\n", - " \n", - " vals = vals.copy()\n", - " idx = 1\n", - " vals &= 1<<idx\n", - " vals >>= idx\n", - " \n", - " delta = 10000\n", - " plotdata = [sum(vals[i:i+delta])/delta for i in range(0, len(vals), delta)]\n", - " plt.plot(plotdata)\n", - "plot_avg()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/gm_platform/fw/adc.c b/gm_platform/fw/adc.c deleted file mode 100644 index 7e1b8cc..0000000 --- a/gm_platform/fw/adc.c +++ /dev/null @@ -1,136 +0,0 @@ -/* Megumin LED display firmware - * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include "adc.h" -#include "serial.h" - -#include <stdbool.h> -#include <stdlib.h> -#include <assert.h> - -static struct __attribute__((__packed__)) hl_adc_pkt { - struct ll_pkt ll; - uint16_t seq; - int32_t gps_1pps_period_sysclk; - volatile uint16_t data[32]; -} adc_pkt[2]; -static uint16_t current_seq = 0; -static int current_buf = 0; - -static void adc_dma_init(void); -static void adc_dma_launch(void); - - -/* Mode that can be used for debugging */ -void adc_init() { - adc_dma_init(); - - /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ - ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */ - /* Sampling time 239.5 ADC clock cycles -> total conversion time 38.5us*/ - ADC1->SMPR = (7<<ADC_SMPR_SMP_Pos); - - /* Setup DMA and triggering */ - /* Trigger from TIM1 TRGO */ - ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos); - ADC1->CHSELR = ADC_CHSELR_CHSEL2; - /* Perform self-calibration */ - ADC1->CR |= ADC_CR_ADCAL; - while (ADC1->CR & ADC_CR_ADCAL) - ; - /* Enable conversion */ - ADC1->CR |= ADC_CR_ADEN; - ADC1->CR |= ADC_CR_ADSTART; -} - -static void adc_dma_init() { - /* Configure DMA 1 Channel 1 to get rid of all the data */ - DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; - DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos); - DMA1_Channel1->CCR |= - (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */ - | (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */ - | DMA_CCR_MINC - | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */ - - /* triggered on half-transfer and on transfer completion. We use this to send out the ADC data and to trap into GDB. */ - NVIC_EnableIRQ(DMA1_Channel1_IRQn); - NVIC_SetPriority(DMA1_Channel1_IRQn, 2<<5); - - adc_dma_launch(); -} - -void adc_dma_launch() { - DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Disable channel */ - current_buf = !current_buf; - DMA1_Channel1->CMAR = (unsigned int)&(adc_pkt[current_buf].data); - DMA1_Channel1->CNDTR = ARRAY_LEN(adc_pkt[current_buf].data); - DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ -} - -void adc_timer_init(int psc, int ivl) { - TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal */ - TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */ - TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ - TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ - /* Set prescaler and interval */ - TIM1->PSC = psc-1; - TIM1->ARR = ivl-1; - /* Preload all values */ - TIM1->EGR = TIM_EGR_UG; - TIM1->CR1 = TIM_CR1_ARPE; - /* And... go! */ - TIM1->CR1 |= TIM_CR1_CEN; -} - -/* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */ -static void gdb_dump(void) { -} - -void DMA1_Channel1_IRQHandler(void) { - uint32_t isr = DMA1->ISR; - /* Clear the interrupt flag */ - DMA1->IFCR |= DMA_IFCR_CGIF1; - adc_dma_launch(); - - gdb_dump(); - - adc_pkt[!current_buf].seq = current_seq++; - adc_pkt[!current_buf].gps_1pps_period_sysclk = gps_1pps_period_sysclk; - /* Ignore return value since we can't do anything here. Overruns are logged in serial.c. */ - usart_send_packet_nonblocking(&adc_pkt[!current_buf].ll, sizeof(adc_pkt[!current_buf])); - - /* - static int debug_buf_pos = 0; - if (st->sync) { - if (debug_buf_pos < NCH) { - debug_buf_pos = NCH; - } else { - adc_buf[debug_buf_pos++] = symbol; - - if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { - debug_buf_pos = 0; - st->sync = 0; - gdb_dump(); - for (int i=0; i<sizeof(adc_buf)/sizeof(adc_buf[0]); i++) - adc_buf[i] = -255; - } - } - } - */ -} - diff --git a/gm_platform/fw/adc.h b/gm_platform/fw/adc.h deleted file mode 100644 index cba18d1..0000000 --- a/gm_platform/fw/adc.h +++ /dev/null @@ -1,26 +0,0 @@ -/* Megumin LED display firmware - * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#ifndef __ADC_H__ -#define __ADC_H__ - -#include "global.h" - -void adc_init(); -void adc_timer_init(int psc, int ivl); - -#endif/*__ADC_H__*/ diff --git a/gm_platform/fw/base.c b/gm_platform/fw/base.c deleted file mode 100644 index 8e7c03b..0000000 --- a/gm_platform/fw/base.c +++ /dev/null @@ -1,25 +0,0 @@ - -#include <unistd.h> -#include <stdbool.h> - -int __errno = 0; -void *_impure_ptr = NULL; - -void __sinit(void) { -} - -void *memset(void *s, int c, size_t n) { - char *end = (char *)s + n; - for (char *p = (char *)s; p < end; p++) - *p = (char)c; - return s; -} - -size_t strlen(const char *s) { - const char *start = s; - while (*s++); - return s - start - 1; -} - -void __assert_func(bool value) { -} diff --git a/gm_platform/fw/cmsis_exports.c b/gm_platform/fw/cmsis_exports.c deleted file mode 100644 index 39874b5..0000000 --- a/gm_platform/fw/cmsis_exports.c +++ /dev/null @@ -1,48 +0,0 @@ -#ifndef __GENERATED_CMSIS_HEADER_EXPORTS__ -#define __GENERATED_CMSIS_HEADER_EXPORTS__ - -#include <stm32f030x6.h> - -/* stm32f030x6.h */ -TIM_TypeDef *tim3 = TIM3; -TIM_TypeDef *tim14 = TIM14; -RTC_TypeDef *rtc = RTC; -WWDG_TypeDef *wwdg = WWDG; -IWDG_TypeDef *iwdg = IWDG; -I2C_TypeDef *i2c1 = I2C1; -PWR_TypeDef *pwr = PWR; -SYSCFG_TypeDef *syscfg = SYSCFG; -EXTI_TypeDef *exti = EXTI; -ADC_TypeDef *adc1 = ADC1; -ADC_Common_TypeDef *adc1_common = ADC1_COMMON; -ADC_Common_TypeDef *adc = ADC; -TIM_TypeDef *tim1 = TIM1; -SPI_TypeDef *spi1 = SPI1; -USART_TypeDef *usart1 = USART1; -TIM_TypeDef *tim16 = TIM16; -TIM_TypeDef *tim17 = TIM17; -DBGMCU_TypeDef *dbgmcu = DBGMCU; -DMA_TypeDef *dma1 = DMA1; -DMA_Channel_TypeDef *dma1_channel1 = DMA1_Channel1; -DMA_Channel_TypeDef *dma1_channel2 = DMA1_Channel2; -DMA_Channel_TypeDef *dma1_channel3 = DMA1_Channel3; -DMA_Channel_TypeDef *dma1_channel4 = DMA1_Channel4; -DMA_Channel_TypeDef *dma1_channel5 = DMA1_Channel5; -FLASH_TypeDef *flash = FLASH; -OB_TypeDef *ob = OB; -RCC_TypeDef *rcc = RCC; -CRC_TypeDef *crc = CRC; -GPIO_TypeDef *gpioa = GPIOA; -GPIO_TypeDef *gpiob = GPIOB; -GPIO_TypeDef *gpioc = GPIOC; -GPIO_TypeDef *gpiod = GPIOD; -GPIO_TypeDef *gpiof = GPIOF; - -#include <core_cm0.h> - -/* core_cm0.h */ -SCB_Type *scb = SCB; -SysTick_Type *systick = SysTick; -NVIC_Type *nvic = NVIC; - -#endif//__GENERATED_CMSIS_HEADER_EXPORTS__ diff --git a/gm_platform/fw/cobs.c b/gm_platform/fw/cobs.c deleted file mode 100644 index 041dd8f..0000000 --- a/gm_platform/fw/cobs.c +++ /dev/null @@ -1,212 +0,0 @@ - -#include "serial.h" -#include "cobs.h" - -int cobs_encode_usart(int (*output)(char), char *src, size_t srclen) { - if (srclen > 254) - return -1; - - size_t p = 0; - while (p <= srclen) { - - char val; - if (p != 0 && src[p-1] != 0) { - val = src[p-1]; - - } else { - size_t q = p; - while (q < srclen && src[q] != 0) - q++; - val = (char)q-p+1; - } - - int rv = output(val); - if (rv) - return rv; - p++; - } - - int rv = output(0); - if (rv) - return rv; - - return 0; -} - -/*@ requires \valid(dst + (0..dstlen-1)); - @ requires \valid_read(src + (0..srclen-1)); - @ requires \separated(dst + (0..dstlen-1), src + (0..srclen-1)); - @ - @ behavior maybe_valid_frame: - @ assumes 1 <= srclen <= dstlen <= 65535; - @ assumes \exists integer j; j > 0 && \forall integer i; 0 <= i < j ==> src[i] != 0; - @ assumes \exists integer i; 0 <= i < srclen && src[i] == 0; - @ assigns dst[0..dstlen-1]; - @ ensures \result >= 0 || \result == -3; - @ ensures \result >= 0 ==> src[\result+1] == 0; - @ ensures \result >= 0 ==> (\forall integer i; 0 <= i < \result ==> src[i] != 0); - @ - @ behavior invalid_frame: - @ assumes 1 <= srclen <= dstlen <= 65535; - @ assumes src[0] == 0 || \forall integer i; 0 <= i < srclen ==> src[i] != 0; - @ assigns dst[0..dstlen-1]; - @ ensures \result == -2; - @ - @ behavior invalid_buffers: - @ assumes dstlen < 0 || dstlen > 65535 - @ || srclen < 1 || srclen > 65535 - @ || dstlen < srclen; - @ assigns \nothing; - @ ensures \result == -1; - @ - @ complete behaviors; - @ disjoint behaviors; - @*/ -ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen) { - if (dstlen > 65535 || srclen > 65535) - return -1; - - if (srclen < 1) - return -1; - - if (dstlen < srclen) - return -1; - - size_t p = 1; - size_t c = (unsigned char)src[0]; - //@ assert 0 <= c < 256; - //@ assert 0 <= c; - //@ assert c < 256; - if (c == 0) - return -2; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ - //@ assert c >= 0; - //@ assert c != 0; - //@ assert c <= 257; - //@ assert c > 0; - //@ assert c >= 0 && c != 0 ==> c > 0; - - /*@ //loop invariant \forall integer i; 0 <= i <= p ==> (i == srclen || src[i] != 0); - @ loop invariant \forall integer i; 1 <= i < p ==> src[i] != 0; - @ loop invariant c > 0; - @ loop invariant 1 <= p <= srclen <= dstlen <= 65535; - @ loop invariant \separated(dst + (0..dstlen-1), src + (0..srclen-1)); - @ loop invariant \valid_read(src + (0..srclen-1)); - @ loop invariant \forall integer i; 1 <= i <= srclen ==> \valid(dst + i - 1); - @ loop assigns dst[0..dstlen-1], p, c; - @ loop variant srclen-p; - @*/ - while (p < srclen && src[p]) { - char val; - c--; - - //@ assert src[p] != 0; - if (c == 0) { - c = (unsigned char)src[p]; - val = 0; - } else { - val = src[p]; - } - - //@ assert 0 <= p-1 <= dstlen-1; - dst[p-1] = val; - p++; - } - - if (p == srclen) - return -2; /* Invalid framing. The terminating null byte should always be present in the input buffer. */ - - if (c != 1) - return -3; /* Invalid framing. The skip counter does not hit the end of the frame. */ - - //@ assert 0 < p <= srclen <= 65535; - //@ assert src[p] == 0; - //@ assert \forall integer i; 1 <= i < p ==> src[i] != 0; - return p-1; -} - -void cobs_decode_incremental_initialize(struct cobs_decode_state *state) { - state->p = 0; - state->c = 0; -} - -int cobs_decode_incremental(struct cobs_decode_state *state, char *dst, size_t dstlen, char src) { - if (state->p == 0) { - if (src == 0) - goto empty_errout; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ - state->c = (unsigned char)src; - state->p++; - return 0; - } - - if (!src) { - if (state->c != 1) - goto errout; /* Invalid framing. The skip counter does not hit the end of the frame. */ - int rv = state->p-1; - cobs_decode_incremental_initialize(state); - return rv; - } - - char val; - state->c--; - - if (state->c == 0) { - state->c = (unsigned char)src; - val = 0; - } else { - val = src; - } - - size_t pos = state->p-1; - if (pos >= dstlen) - return -2; /* output buffer too small */ - dst[pos] = val; - state->p++; - return 0; - -errout: - cobs_decode_incremental_initialize(state); - return -1; - -empty_errout: - cobs_decode_incremental_initialize(state); - return -3; -} - -#ifdef VALIDATION -/*@ - @ requires 0 <= d < 256; - @ assigns \nothing; - @*/ -size_t test(char foo, unsigned int d) { - unsigned int c = (unsigned char)foo; - if (c != 0) { - //@ assert c < 256; - //@ assert c >= 0; - //@ assert c != 0; - //@ assert c > 0; - } - if (d != 0) { - //@ assert d >= 0; - //@ assert d != 0; - //@ assert d > 0; - } - return c + d; -} - -#include <__fc_builtin.h> - -void main(void) { - char inbuf[254]; - char cobsbuf[256]; - char outbuf[256]; - - size_t range = Frama_C_interval(0, sizeof(inbuf)); - Frama_C_make_unknown((char *)inbuf, range); - - cobs_encode(cobsbuf, sizeof(cobsbuf), inbuf, sizeof(inbuf)); - cobs_decode(outbuf, sizeof(outbuf), cobsbuf, sizeof(cobsbuf)); - - //@ assert \forall integer i; 0 <= i < sizeof(inbuf) ==> outbuf[i] == inbuf[i]; -} -#endif//VALIDATION - diff --git a/gm_platform/fw/cobs.h b/gm_platform/fw/cobs.h deleted file mode 100644 index 8c84ca4..0000000 --- a/gm_platform/fw/cobs.h +++ /dev/null @@ -1,23 +0,0 @@ -#ifndef __COBS_H__ -#define __COBS_H__ - -#include <stdint.h> -#include <unistd.h> -#include <string.h> - - -struct cobs_decode_state { - size_t p; - size_t c; -}; - - -ssize_t cobs_encode(char *dst, size_t dstlen, char *src, size_t srclen); -ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen); - -int cobs_encode_usart(int (*output)(char), char *src, size_t srclen); - -void cobs_decode_incremental_initialize(struct cobs_decode_state *state); -int cobs_decode_incremental(struct cobs_decode_state *state, char *dst, size_t dstlen, char src); - -#endif//__COBS_H__ diff --git a/gm_platform/fw/crctest.py b/gm_platform/fw/crctest.py deleted file mode 100644 index 5c97be9..0000000 --- a/gm_platform/fw/crctest.py +++ /dev/null @@ -1,79 +0,0 @@ -custom_crc_table = {} - -def generate_crc32_table(_poly): - - global custom_crc_table - - for i in range(256): - c = i << 24 - - for j in range(8): - c = (c << 1) ^ _poly if (c & 0x80000000) else c << 1 - - custom_crc_table[i] = c & 0xffffffff - - -def crc32_stm(bytes_arr): - - length = len(bytes_arr) - crc = 0xffffffff - - k = 0 - while length >= 4: - - v = ((bytes_arr[k] << 24) & 0xFF000000) | ((bytes_arr[k+1] << 16) & 0xFF0000) | \ - ((bytes_arr[k+2] << 8) & 0xFF00) | (bytes_arr[k+3] & 0xFF) - - crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ v)] - crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 8))] - crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 16))] - crc = ((crc << 8) & 0xffffffff) ^ custom_crc_table[0xFF & ((crc >> 24) ^ (v >> 24))] - - k += 4 - length -= 4 - - if length > 0: - v = 0 - - for i in range(length): - v |= (bytes_arr[k+i] << 24-i*8) - - if length == 1: - v &= 0xFF000000 - - elif length == 2: - v &= 0xFFFF0000 - - elif length == 3: - v &= 0xFFFFFF00 - - crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v ) )]; - crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 8) )]; - crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 16) )]; - crc = (( crc << 8 ) & 0xffffffff) ^ custom_crc_table[0xFF & ( (crc >> 24) ^ (v >> 24) )]; - - return crc - -poly = 0x04C11DB7 -buf = bytes(reversed([1, 2, 3, 4])) - -generate_crc32_table(poly) -print(hex(crc32_stm(bytearray(buf)))) - -from crccheck import crc -import struct - -def rev_bits_in_word(w): - return sum( ((w>>i)&1) << (31-i) for i in range(32) ) - -import zlib -def crc32stm(inbytes): - crc32 = crc.Crc32.calc(inbytes)^0xffffffff - #crc32 = zlib.crc32(inbytes)^0xffffffff - crc32 = rev_bits_in_word(crc32) - return crc32 - -#data = [0x80,0x40,0xc0,0x20] -data = [0x00, 0, 0, 0x80, 0, 0, 0, 0x80] -print(hex(crc32stm(bytes(data)))) -print(hex(zlib.crc32(bytes([0, 0, 0, 1]))^0xffffffff)) diff --git a/gm_platform/fw/global.h b/gm_platform/fw/global.h deleted file mode 100644 index 28ac6cd..0000000 --- a/gm_platform/fw/global.h +++ /dev/null @@ -1,62 +0,0 @@ -/* Megumin LED display firmware - * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#ifndef __GLOBAL_H__ -#define __GLOBAL_H__ - -/* Workaround for sub-par ST libraries */ -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wstrict-aliasing" -#include <stm32f0xx.h> -#include <stm32f0xx_ll_utils.h> -#include <stm32f0xx_ll_spi.h> -#pragma GCC diagnostic pop - -#include <system_stm32f0xx.h> - -#include <stdint.h> -#include <stdbool.h> -#include <string.h> -#include <unistd.h> - -/* Microcontroller part number: STM32F030F4P6 */ - -/* Things used for module status reporting. */ -#define FIRMWARE_VERSION 1 -#define HARDWARE_VERSION 0 - -#define TS_CAL1 (*(uint16_t *)0x1FFFF7B8) -#define VREFINT_CAL (*(uint16_t *)0x1FFFF7BA) - -#define ARRAY_LEN(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) - -extern volatile unsigned int sys_time; -extern volatile unsigned int sys_time_seconds; - -#define UNUSED(var) ((void)var) - -union leds { - struct { - unsigned int pps, sd_card, usb, ocxo, error, _nc1, _nc2, _nc3; - }; - unsigned int arr[8]; -}; - -extern volatile union leds leds; -extern volatile int32_t gps_1pps_period_sysclk; - -#endif/*__GLOBAL_H__*/ diff --git a/gm_platform/fw/grid_scope.ipynb b/gm_platform/fw/grid_scope.ipynb deleted file mode 100644 index 1e5f942..0000000 --- a/gm_platform/fw/grid_scope.ipynb +++ /dev/null @@ -1,3699 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import sqlite3\n", - "import struct\n", - "import datetime\n", - "\n", - "import matplotlib\n", - "from matplotlib import pyplot as plt\n", - "from matplotlib import patches\n", - "import numpy as np\n", - "from scipy import signal, optimize\n", - "from tqdm.notebook import tnrange, tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib notebook" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "db = sqlite3.connect('waveform.sqlite3')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Run 000: 2020-01-30 14:24:25 - 2020-01-30 14:24:33 ( 0:00:07.571, 6880sp)\n", - "Run 001: 2020-01-30 14:24:56 - 2020-01-30 14:25:25 ( 0:00:28.305, 8992sp)\n", - "Run 002: 2020-01-30 14:25:33 - 2020-01-30 14:30:37 ( 0:05:04.016, 290112sp)\n", - "Run 003: 2020-01-30 14:31:31 - 2020-01-30 14:37:59 ( 0:06:27.900, 384192sp)\n", - "Run 004: 2020-01-30 14:38:30 - 2020-01-30 14:45:27 ( 0:06:56.604, 417216sp)\n", - "Run 005: 2020-01-30 15:18:50 - 2020-01-30 15:19:01 ( 0:00:10.690, 10240sp)\n", - "Run 006: 2020-01-30 16:37:15 - 2020-01-30 16:37:17 ( 0:00:02.527, 2560sp)\n", - "Run 007: 2020-01-30 16:44:23 - 2020-01-30 16:58:48 ( 0:14:24.293, 665600sp)\n", - "Run 008: 2020-01-30 17:06:35 - 2020-01-30 17:46:16 ( 0:39:41.608, 2163168sp)\n", - "Run 009: 2020-01-30 17:46:20 - 2020-01-30 18:11:16 ( 0:24:55.928, 1492480sp)\n", - "Run 010: 2020-01-30 18:11:39 - 2020-01-30 18:22:29 ( 0:10:50.025, 642560sp)\n", - "Run 011: 2020-01-30 18:22:32 - 2020-01-30 19:33:52 ( 1:11:20.495, 4280320sp)\n", - "Run 012: 2020-01-31 13:16:53 - 2020-01-31 13:18:12 ( 0:01:19.317, 79360sp)\n", - "Run 013: 2020-01-31 13:30:54 - 2020-01-31 13:31:35 ( 0:00:40.762, 40960sp)\n", - "Run 014: 2020-01-31 13:45:37 - 2020-01-31 13:45:42 ( 0:00:05.090, 5120sp)\n", - "Run 015: 2020-01-31 13:53:56 - 2020-01-31 13:54:01 ( 0:00:05.089, 5120sp)\n", - "Run 016: 2020-01-31 13:54:21 - 2020-01-31 13:54:26 ( 0:00:05.088, 5120sp)\n", - "Run 017: 2020-01-31 13:55:41 - 2020-01-31 13:55:46 ( 0:00:05.087, 5120sp)\n", - "Run 018: 2020-01-31 13:56:13 - 2020-01-31 13:56:19 ( 0:00:05.091, 5120sp)\n", - "Run 019: 2020-01-31 13:56:27 - 2020-01-31 13:56:30 ( 0:00:02.527, 2560sp)\n", - "Run 020: 2020-01-31 13:56:40 - 2020-01-31 13:56:48 ( 0:00:07.649, 7680sp)\n", - "Run 021: 2020-01-31 13:57:10 - 2020-01-31 13:58:34 ( 0:01:24.342, 84416sp)\n", - "Run 022: 2020-01-31 14:05:08 - 2020-01-31 14:05:24 ( 0:00:15.242, 15360sp)\n", - "Run 023: 2020-01-31 14:05:33 - 2020-01-31 14:12:50 ( 0:07:17.092, 435200sp)\n", - "Run 024: 2020-01-31 14:13:21 - 2020-01-31 14:15:39 ( 0:02:18.190, 138240sp)\n", - "Run 025: 2020-01-31 14:18:16 - 2020-01-31 18:58:25 ( 4:40:09.251, 16611840sp)\n" - ] - } - ], - "source": [ - "for run_id, start, end, count in db.execute('SELECT run_id, MIN(rx_ts), MAX(rx_ts), COUNT(*) FROM measurements GROUP BY run_id'):\n", - " foo = lambda x: datetime.datetime.fromtimestamp(x/1000)\n", - " start, end = foo(start), foo(end)\n", - " print(f'Run {run_id:03d}: {start:%Y-%m-%d %H:%M:%S} - {end:%Y-%m-%d %H:%M:%S} ({str(end-start)[:-3]:>13}, {count*32:>9d}sp)')\n", - "last_run, n_records = run_id, count\n", - "sampling_rate = 1000.0" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "par = lambda *rs: 1/sum(1/r for r in rs) # resistor parallel calculation\n", - "\n", - "# FIXME: These are for the first prototype only!\n", - "vmeas_source_impedance = 330e3\n", - "vmeas_source_scale = 0.5\n", - "\n", - "vcc = 15.0\n", - "vmeas_div_high = 27e3\n", - "vmeas_div_low = par(4.7e3, 10e3)\n", - "vmeas_div_voltage = vcc * vmeas_div_low / (vmeas_div_high + vmeas_div_low)\n", - "vmeas_div_impedance = par(vmeas_div_high, vmeas_div_low)\n", - "\n", - "#vmeas_overall_factor = vmeas_div_impedance / (vmeas_source_impedance + vmeas_div_impedance)\n", - "v0 = 1.5746\n", - "v100 = 2.004\n", - "vn100 = 1.1452\n", - "\n", - "adc_vcc = 3.3 # V\n", - "adc_fullscale = 4095\n", - "\n", - "adc_val_to_voltage_factor = 1/adc_fullscale * adc_vcc\n", - "\n", - "adc_count_to_vmeas = lambda x: (x*adc_val_to_voltage_factor - v0) / (v100-v0) * 100" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "afc732c0ada8419e89a7ff2551212c00", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=0, max=519120), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "limit = n_records\n", - "record_size = 32\n", - "skip_dropped_sections = False\n", - "\n", - "data = np.zeros(limit*record_size)\n", - "data[:] = np.nan\n", - "\n", - "last_seq = None\n", - "write_index = 0\n", - "for i, (seq, chunk) in tqdm(enumerate(db.execute(\n", - " 'SELECT seq, data FROM measurements WHERE run_id = ? ORDER BY rx_ts LIMIT ? OFFSET ?',\n", - " (last_run, limit, n_records-limit))), total=n_records):\n", - " \n", - " if last_seq is None or seq == (last_seq + 1)%0xffff:\n", - " last_seq = seq\n", - " idx = write_index if skip_dropped_sections else i\n", - " data[idx*record_size:(idx+1)*record_size] = np.frombuffer(chunk, dtype='<H')\n", - " write_index += 1\n", - " \n", - " elif seq > last_seq:\n", - " last_seq = seq\n", - " # nans = np.empty((record_size,))\n", - " # nans[:] = np.nan\n", - " # data = np.append(data, nans) FIXME\n", - " \n", - "data = (data * adc_val_to_voltage_factor - v0) / (v100-v0) * 100" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "227.138252895397" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_not_nan = data[~np.isnan(data)]\n", - "np.sqrt(np.mean(np.square(data_not_nan)))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, (top, bottom) = plt.subplots(2, figsize=(9,6))\n", - "fig.tight_layout(pad=3, h_pad=0.1)\n", - "\n", - "range_start, range_len = -300, 60 # [s]\n", - "\n", - "data_slice = data[ int(range_start * sampling_rate) : int((range_start + range_len) * sampling_rate) ]\n", - "\n", - "top.grid()\n", - "top.plot(np.linspace(0, range_len, int(range_len*sampling_rate)), data_slice, lw=1.0)\n", - "top.set_xlim([range_len/2-0.25, range_len/2+0.25])\n", - "mean = np.mean(data_not_nan)\n", - "rms = np.sqrt(np.mean(np.square(data_not_nan - mean)))\n", - "peak = np.max(np.abs(data_not_nan - mean))\n", - "top.axhline(mean, color='red')\n", - "bbox = {'facecolor': 'black', 'alpha': 0.8, 'pad': 2}\n", - "top.text(0, mean, f'mean: {mean:.3f}', color='white', bbox=bbox)\n", - "top.text(0.98, 0.2, f'V_RMS: {rms:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", - "top.text(0.98, 0.1, f'V_Pk: {peak:.3f}', transform=top.transAxes, color='white', bbox=bbox, ha='right')\n", - "\n", - "bottom.grid()\n", - "bottom.specgram(data_slice, Fs=sampling_rate)\n", - "top.set_ylabel('U [V]')\n", - "bottom.set_ylabel('F [Hz]')\n", - "bottom.set_xlabel('t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "fs = sampling_rate # Hz\n", - "ff = 50 # Hz\n", - "\n", - "analysis_periods = 10\n", - "window_len = fs * analysis_periods/ff\n", - "nfft_factor = 4\n", - "sigma = window_len/8 # samples\n", - "\n", - "f, t, Zxx = signal.stft(data,\n", - " fs = fs,\n", - " window=('gaussian', sigma),\n", - " nperseg = window_len,\n", - " nfft = window_len * nfft_factor)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(9, 3))\n", - "fig.tight_layout(pad=2, h_pad=0.1)\n", - "\n", - "ax.pcolormesh(t[-200:-100], f[:250], np.abs(Zxx[:250,-200:-100]))\n", - "ax.set_title(f\"Run {last_run}\", pad=-20, color='white')\n", - "ax.grid()\n", - "ax.set_ylabel('f [Hz]')\n", - "ax.set_ylim([30, 75]) # Hz\n", - "ax.set_xlabel('simulation time t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "36ffcac30c8b4b378d3c422d3ef0698b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=0, max=166118), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "f_t = t\n", - "\n", - "n_f, n_t = Zxx.shape\n", - "# start, stop = 180, 220\n", - "# start, stop = 90, 110\n", - "# start, stop = 15, 35\n", - "# bounds_f = slice(start // 4 * nfft_factor, stop // 4 * nfft_factor)\n", - "f_min, f_max = 30, 70 # Hz\n", - "bounds_f = slice(np.argmax(f > f_min), np.argmin(f < f_max))\n", - "\n", - "\n", - "f_mean = np.zeros(Zxx.shape[1])\n", - "for le_t in tnrange(1, Zxx.shape[1] - 1):\n", - " frame_f = f[bounds_f]\n", - " frame_step = frame_f[1] - frame_f[0]\n", - " time_step = f_t[1] - f_t[0]\n", - " #if t == 10:\n", - " # axs[-1].plot(frame_f, frame_Z)\n", - " frame_Z = np.abs(Zxx[bounds_f, le_t])\n", - " # frame_f = f[180:220]\n", - " # frame_Z = np.abs(Zxx[180:220, 40])\n", - " # frame_f = f[15:35]\n", - " # frame_Z = np.abs(Zxx[15:35, 40])\n", - " # plt.plot(frame_f, frame_Z)\n", - "\n", - " # peak_f = frame_f[np.argmax(frame)]\n", - " # plt.axvline(peak_f, color='red')\n", - "\n", - "# def gauss(x, *p):\n", - "# A, mu, sigma, o = p\n", - "# return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + o\n", - "\n", - " def gauss(x, *p):\n", - " A, mu, sigma = p\n", - " return A*np.exp(-(x-mu)**2/(2.*sigma**2))\n", - "\n", - " f_start = frame_f[np.argmax(frame_Z)]\n", - " A_start = np.max(frame_Z)\n", - " p0 = [A_start, f_start, 1.]\n", - " try:\n", - " coeff, var = optimize.curve_fit(gauss, frame_f, frame_Z, p0=p0)\n", - " # plt.plot(frame_f, gauss(frame_f, *coeff))\n", - " #print(coeff)\n", - " A, mu, sigma, *_ = coeff\n", - " f_mean[le_t] = mu\n", - " except Exception:\n", - " f_mean[le_t] = np.nan" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(9, 5), sharex=True)\n", - "fig.tight_layout(pad=2.2, h_pad=0, w_pad=1)\n", - "\n", - "label = f'Run {last_run}'\n", - "ax.plot(f_t[1:-1], f_mean[1:-1])\n", - "\n", - "# b, a = signal.butter(3,\n", - "# 1/5, # Hz\n", - "# btype='lowpass',\n", - "# fs=1/time_step)\n", - "# filtered = signal.lfilter(b, a, f_mean[1:-1], axis=0)\n", - "# ax.plot(f_t[1:-1], filtered)\n", - "\n", - "ax.set_title(label, pad=-20)\n", - "ax.set_ylabel('f [Hz]')\n", - "ax.grid()\n", - "if not label in ['off_frequency', 'sweep_phase_steps']:\n", - " ax.set_ylim([49.90, 50.10])\n", - " var = np.var(f_mean[~np.isnan(f_mean)][1:-1])\n", - " ax.text(0.5, 0.08, f'σ²={var * 1e3:.3g} mHz²', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", - " ax.text(0.5, 0.15, f'σ={np.sqrt(var) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center', color='white', bbox=bbox)\n", - "\n", - "# ax.text(0.5, 0.2, f'filt. σ²={np.var(filtered) * 1e3:.3g} mHz', transform=ax.transAxes, ha='center')\n", - "else:\n", - " f_min, f_max = min(f_mean[1:-1]), max(f_mean[1:-1])\n", - " delta = f_max - f_min\n", - " ax.set_ylim(f_min - delta * 0.1, f_max + delta * 0.3)\n", - "\n", - "for i in np.where(np.isnan(f_mean))[0]:\n", - " ax.axvspan(f_t[i], f_t[i+1], color='lightblue')\n", - "\n", - "ax.set_xlabel('recording time t [s]')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option)\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width, fig.canvas.height);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "f_copy = np.copy(f_mean[1:-1])\n", - "f_copy[np.isnan(f_copy)] = np.mean(f_copy[~np.isnan(f_copy)])\n", - "b, a = signal.cheby2(7, 86, 100, 'low', output='ba', fs=1000)\n", - "filtered = signal.lfilter(b, a, f_copy)\n", - "\n", - "b2, a2 = signal.cheby2(3, 30, 1, 'high', output='ba', fs=1000)\n", - "filtered2 = signal.lfilter(b2, a2, filtered)\n", - "\n", - "fig, (ax2, ax1) = plt.subplots(2, figsize=(9,7))\n", - "ax1.plot(f_t[1:-1], f_copy, color='lightgray')\n", - "ax1.set_ylim([49.90, 50.10])\n", - "ax1.grid()\n", - "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", - "ax1.xaxis.set_major_formatter(formatter)\n", - "zoom_offx = 7000 # s\n", - "zoom_len = 300 # s\n", - "ax1.set_xlim([zoom_offx, zoom_offx + zoom_len])\n", - "\n", - "ax1.plot(f_t[1:-1], filtered, color='orange')\n", - "ax1r = ax1.twinx()\n", - "ax1r.plot(f_t[1:-1], filtered2, color='red')\n", - "ax1r.set_ylim([-0.015, 0.015])\n", - "ax1.set_title(f'Zoomed trace ({datetime.timedelta(seconds=zoom_len)})', pad=-20)\n", - "\n", - "\n", - "ax2.set_title(f'Run {last_run}')\n", - "ax2.plot(f_t[1:-1], f_copy, color='orange')\n", - "\n", - "ax2r = ax2.twinx()\n", - "ax2r.set_ylim([-0.1, 0.1])\n", - "ax2r.plot(f_t[1:-1], filtered2, color='red')\n", - "#ax2.plot(f_t[1:-1], filtered, color='orange', zorder=1)\n", - "ax2.set_ylim([49.90, 50.10])\n", - "ax2.set_xlim([0, f_t[-2]])\n", - "ax2.grid()\n", - "formatter = matplotlib.ticker.FuncFormatter(lambda s, x: str(datetime.timedelta(seconds=s)))\n", - "ax2.xaxis.set_major_formatter(formatter)\n", - "\n", - "ax2.legend(handles=[\n", - " patches.Patch(color='lightgray', label='Raw frequency'),\n", - " patches.Patch(color='orange', label='low-pass filtered'),\n", - " patches.Patch(color='red', label='band-pass filtered')])\n", - "\n", - "#ax2r.spines['right'].set_color('red')\n", - "ax2r.yaxis.label.set_color('red')\n", - "#ax2r.tick_params(axis='y', colors='red')\n", - "\n", - "#ax1r.spines['right'].set_color('red')\n", - "ax1r.yaxis.label.set_color('red')\n", - "#ax1r.tick_params(axis='y', colors='red')\n", - "\n", - "ax1.set_ylabel('f [Hz]')\n", - "ax1r.set_ylabel('band-pass Δf [Hz]')\n", - "ax2.set_ylabel('f [Hz]')\n", - "ax2r.set_ylabel('band-pass Δf [Hz]')\n", - "\n", - "# Cut out first 10min of filtered data to give filters time to settle\n", - "rms_slice = filtered2[np.where(f_t[1:] > 10*60)[0][0]:]\n", - "rms = np.sqrt(np.mean(np.square(rms_slice)))\n", - "ax1.text(0.5, 0.1, f'RMS (band-pass): {rms*1e3:.3f}mHz', transform=ax1.transAxes, color='white', bbox=bbox, ha='center')\n", - "None" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "chunk_size = 256\n", - "\n", - "with open('filtered_freq.bin', 'wb') as f:\n", - " for chunk in range(0, len(rms_slice), chunk_size):\n", - " out_data = rms_slice[chunk:chunk+chunk_size]\n", - " f.write(struct.pack(f'{len(out_data)}f', *out_data))\n", - " \n", - "with open('raw_freq.bin', 'wb') as f:\n", - " for chunk in range(0, len(f_copy), chunk_size):\n", - " out_data = f_copy[chunk:chunk+chunk_size]\n", - " f.write(struct.pack(f'{len(out_data)}f', *out_data))" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(160118,)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def modulate(sequences, data)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/gm_platform/fw/main.c b/gm_platform/fw/main.c deleted file mode 100644 index 34c838b..0000000 --- a/gm_platform/fw/main.c +++ /dev/null @@ -1,241 +0,0 @@ -/* Megumin LED display firmware - * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include "global.h" -#include "adc.h" -#include "serial.h" - - -volatile unsigned int sys_time_seconds = 0; -volatile union leds leds; -volatile int32_t gps_1pps_period_sysclk = -1; - -int main(void) { - /* Get GPIOA and SPI1 up to flash status LEDs */ - RCC->AHBENR |= RCC_AHBENR_GPIOAEN; - RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; - - GPIOA->MODER |= - (3<<GPIO_MODER_MODER2_Pos) /* PA2 - LINE_MEAS */ - | (1<<GPIO_MODER_MODER3_Pos) /* PA3 - LED_STB */ - | (1<<GPIO_MODER_MODER4_Pos) /* PA4 - SD_CS */ - | (2<<GPIO_MODER_MODER5_Pos) /* PA5 - SCK */ - | (2<<GPIO_MODER_MODER6_Pos) /* PA6 - MISO */ - | (2<<GPIO_MODER_MODER7_Pos) /* PA7 - MOSI */ - | (2<<GPIO_MODER_MODER9_Pos) /* PA9 - HOST_RX */ - | (2<<GPIO_MODER_MODER10_Pos);/* PA10 - HOST_TX */ - - /* Set shift register IO GPIO output speed */ - GPIOA->OSPEEDR |= - (2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* LED_STB */ - | (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* SD_CS */ - | (2<<GPIO_OSPEEDR_OSPEEDR5_Pos) /* SCK */ - | (2<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* MOSI */ - | (2<<GPIO_OSPEEDR_OSPEEDR9_Pos); /* HOST_RX */ - - GPIOA->AFR[0] = (0<<GPIO_AFRL_AFRL5_Pos) | (0<<GPIO_AFRL_AFRL6_Pos) | (0<<GPIO_AFRL_AFRL7_Pos); - GPIOA->AFR[1] = (1<<8) | (1<<4); - - SPI1->CR1 = - SPI_CR1_SSM - | SPI_CR1_SSI - | SPI_CR1_CPOL - | SPI_CR1_CPHA - | (4<<SPI_CR1_BR_Pos) /* /32 ~1.5MHz */ - | SPI_CR1_MSTR; - SPI1->CR2 = (7<<SPI_CR2_DS_Pos); - SPI1->CR1 |= SPI_CR1_SPE; - *((volatile uint8_t*)&(SPI1->DR)) = 0xff; - - /* Wait for OCXO to settle */ - for (int i=0; i<1000000; i++) - ; - - /* Switch clock to PLL based on OCXO input */ - RCC->CR |= RCC_CR_HSEBYP; - RCC->CR |= RCC_CR_HSEON; - RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; - /* PLL config: 19.44MHz /2 x5 -> 48.6MHz */ - RCC->CFGR |= ((5-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; - RCC->CFGR2 = ((2-1)<<RCC_CFGR2_PREDIV_Pos); - RCC->CR |= RCC_CR_PLLON; - while (!(RCC->CR&RCC_CR_PLLRDY)); - RCC->CFGR |= (2<<RCC_CFGR_SW_Pos); - SystemCoreClockUpdate(); - - /* Start systick */ - SysTick_Config(SystemCoreClock/10); /* 100ms interval */ - NVIC_EnableIRQ(SysTick_IRQn); - NVIC_SetPriority(SysTick_IRQn, 3<<5); - - /* Turn on rest of periphery */ - RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN | RCC_AHBENR_CRCEN; - RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN | RCC_APB2ENR_DBGMCUEN |\ - RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM16EN | RCC_APB2ENR_USART1EN; - RCC->APB1ENR |= RCC_APB1ENR_TIM3EN | RCC_APB1ENR_TIM14EN; - - GPIOB->MODER |= - (2<<GPIO_MODER_MODER1_Pos); /* PB0 - GPS 1pps input */ - GPIOB->AFR[0] = (0<<GPIO_AFRL_AFRL1_Pos); - GPIOB->PUPDR = 2<<GPIO_PUPDR_PUPDR1_Pos; - - /* Configure TIM16 for LED update via SPI */ - TIM16->CR2 = 0; - TIM16->DIER = TIM_DIER_UIE | TIM_DIER_CC1IE; - TIM16->CCMR1 = 0; - TIM16->CCR1 = 32; - TIM16->PSC = 48-1; /* 1us */ - TIM16->ARR = 1000-1; /* 1ms */ - TIM16->CR1 = TIM_CR1_CEN; - NVIC_EnableIRQ(TIM16_IRQn); - - /* Configure TIM14 for GPS 1pps input capture */ - TIM14->CCMR1 = (1<<TIM_CCMR1_CC1S_Pos) | (3<<TIM_CCMR1_IC1F_Pos); - TIM14->CCER = TIM_CCER_CC1E; - TIM14->PSC = 1; - TIM14->ARR = 0xffff; - TIM14->DIER = TIM_DIER_CC1IE | TIM_DIER_UIE; - TIM14->EGR = TIM_EGR_UG; - TIM14->CR1 |= TIM_CR1_CEN; - NVIC_EnableIRQ(TIM14_IRQn); - - adc_init(1000000); - adc_timer_init(243, 200); /* 19.44 MHz / 243 -> 200 kHz; /200 -> 1 kHz */ - - usart_dma_init(); - - while (42) { - /* Do nothing and let the interrupts do all the work. */ - } -} - -void tim14_sr_cc1of(void) {} /* gdb hook */ - -void TIM14_IRQHandler(void) { - static uint32_t gps_1pps_period = 0; - static uint32_t update_inc = 0; - static bool in_sync = false; - - uint32_t sr = TIM14->SR; - if (sr & TIM_SR_CC1OF) { - TIM14->SR &= ~(TIM_SR_CC1IF | TIM_SR_CC1OF); - tim14_sr_cc1of(); - - } - if (sr & TIM_SR_UIF) { - TIM14->SR &= ~TIM_SR_UIF; - if (in_sync) { - gps_1pps_period += update_inc; - if (gps_1pps_period > 30000000) { /* Signal out of range */ - in_sync = false; - gps_1pps_period_sysclk = -1; - gps_1pps_period = (uint32_t)-1; - } - } - update_inc = 0x10000; - } - - if (sr & TIM_SR_CC1IF) { /* CC1 event (GPS 1pps input) */ - /* Don't reset update event: If update event arrives while CC1 event is being processed leave UIF set to process - * update event immediately after return from ISR. */ - uint16_t ccr = TIM14->CCR1; - if (in_sync) { - uint32_t new_period = gps_1pps_period + ccr; - if (new_period < 20000000 || new_period > 30000000) { /* Signal out of range */ - in_sync = false; - gps_1pps_period_sysclk = -1; - gps_1pps_period = (uint32_t)-1; - } else { - if ((sr & TIM_SR_UIF) /* we processed an update event in this ISR */ - && (ccr > 0xc000) /* and the capture happened late in the cycle */ - ) { - gps_1pps_period_sysclk = new_period - 0x10000; - update_inc = 0x10000; - gps_1pps_period = 0x10000 - ccr; - } else { - gps_1pps_period_sysclk = new_period; - update_inc = 0x10000 - ccr; /* remaining cycles in this period */ - gps_1pps_period = 0; - } - leds.pps = 200; /* ms */ - } - } else { - gps_1pps_period = 0; - update_inc = 0x10000 - ccr; /* remaining cycles in this period */ - in_sync = true; - } - - } -} - -void TIM16_IRQHandler(void) { - static int leds_update_counter = 0; - if (TIM16->SR & TIM_SR_UIF) { - TIM16->SR &= ~TIM_SR_UIF; - - uint8_t bits = 0, mask = 1; - for (int i=0; i<8; i++) { - if (leds.arr[i]) { - leds.arr[i]--; - bits |= mask; - } - mask <<= 1; - } - - if (leds_update_counter++ == 10) { - leds_update_counter = 0; - - /* Workaround for SPI hardware bug: Even if configured to 8-bit mode, the SPI will do a 16-bit transfer if the - * data register is accessed through a 16-bit write. Unfortunately, the STMCube register defs define DR as an - * uint16_t, so we have to do some magic here to force an 8-bit write. */ - *((volatile uint8_t*)&(SPI1->DR)) = bits; - GPIOA->BRR = 1<<3; - } - } else { - TIM16->SR &= ~TIM_SR_CC1IF; - GPIOA->BSRR = 1<<3; - } -} - -void NMI_Handler(void) { - asm volatile ("bkpt"); -} - -void HardFault_Handler(void) __attribute__((naked)); -void HardFault_Handler() { - asm volatile ("bkpt"); -} - -void SVC_Handler(void) { - asm volatile ("bkpt"); -} - - -void PendSV_Handler(void) { - asm volatile ("bkpt"); -} - -void SysTick_Handler(void) { - static int n = 0; - if (n++ == 10) { - n = 0; - sys_time_seconds++; - if (gps_1pps_period_sysclk < 0) - leds.pps = 200; /* ms */ - } -} - diff --git a/gm_platform/fw/main.c.bak b/gm_platform/fw/main.c.bak deleted file mode 100644 index 07d065d..0000000 --- a/gm_platform/fw/main.c.bak +++ /dev/null @@ -1,162 +0,0 @@ -/* Megumin LED display firmware - * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include "global.h" - -#include "adc.h" - -volatile unsigned int sys_time = 0; -volatile unsigned int sys_time_seconds = 0; - -void TIM1_BRK_UP_TRG_COM_Handler() { - TIM1->SR &= ~TIM_SR_UIF_Msk; -} - -int main(void) { - RCC->CR |= RCC_CR_HSEON; - while (!(RCC->CR&RCC_CR_HSERDY)); - RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; - RCC->CFGR |= ((6-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x6 -> 48.0MHz */ - RCC->CR |= RCC_CR_PLLON; - while (!(RCC->CR&RCC_CR_PLLRDY)); - RCC->CFGR |= (2<<RCC_CFGR_SW_Pos); - SystemCoreClockUpdate(); - SysTick_Config(SystemCoreClock/1000); /* 1ms interval */ - - /* Turn on lots of neat things */ - RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_FLITFEN; - RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN| RCC_APB2ENR_DBGMCUEN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM1EN;; - RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; - - GPIOA->MODER |= - (3<<GPIO_MODER_MODER0_Pos) /* PA0 - Vmeas_A to ADC */ - | (3<<GPIO_MODER_MODER1_Pos) /* PA1 - Vmeas_B to ADC */ - | (1<<GPIO_MODER_MODER2_Pos) /* PA2 - LOAD */ - | (1<<GPIO_MODER_MODER3_Pos) /* PA3 - CH0 */ - | (1<<GPIO_MODER_MODER4_Pos) /* PA4 - CH3 */ - | (0<<GPIO_MODER_MODER5_Pos) /* PA5 - TP1 */ - | (1<<GPIO_MODER_MODER6_Pos) /* PA6 - CH2 */ - | (1<<GPIO_MODER_MODER7_Pos) /* PA7 - CH1 */ - | (0<<GPIO_MODER_MODER9_Pos) /* PA9 - TP2 */ - | (0<<GPIO_MODER_MODER10_Pos);/* PA10 - TP3 */ - - /* Set shift register IO GPIO output speed */ - GPIOA->OSPEEDR |= - (2<<GPIO_OSPEEDR_OSPEEDR2_Pos) /* LOAD */ - | (2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* CH0 */ - | (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* CH3 */ - | (2<<GPIO_OSPEEDR_OSPEEDR6_Pos) /* CH2 */ - | (2<<GPIO_OSPEEDR_OSPEEDR7_Pos); /* CH1 */ - - /* Setup CC1 and CC2. CC2 generates the LED drivers' STROBE, CC1 triggers the IRQ handler */ - TIM1->BDTR = TIM_BDTR_MOE; - TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 */ - TIM1->CCER = TIM_CCER_CC4E; - TIM1->CCR4 = 1; - TIM1->DIER = TIM_DIER_UIE; - - TIM1->PSC = SystemCoreClock/500000 - 1; /* 0.5us/tick */ - TIM1->ARR = 25-1; - /* Preload all values */ - TIM1->EGR |= TIM_EGR_UG; - TIM1->CR1 = TIM_CR1_ARPE; - /* And... go! */ - TIM1->CR1 |= TIM_CR1_CEN; - - void set_outputs(uint8_t val) { - int a=!!(val&1), b=!!(val&2), c=!!(val&4), d=!!(val&8); - GPIOA->ODR &= ~(!a<<3 | !b<<7 | c<<6 | d<<4); - GPIOA->ODR |= a<<3 | b<<7 | !c<<6 | !d<<4; - } - set_outputs(0); - - adc_init(); - - uint8_t out_state = 0x01; -#define DEBOUNCE 100 - int debounce_ctr = 0; - int val_last = 0; - int ctr = 0; -#define RESET 1000 - int reset_ctr = 0; - while (42) { -#define FOO 500000 - if (reset_ctr) - reset_ctr--; - else - set_outputs(0); - - if (debounce_ctr) { - debounce_ctr--; - } else { - int val = !!(GPIOA->IDR & 1); - debounce_ctr = DEBOUNCE; - - if (val != val_last) { - if (val) - set_outputs(out_state & 0xf); - else - set_outputs(out_state >> 4); - reset_ctr = RESET; - val_last = val; - ctr++; - - if (ctr == 100) { - ctr = 0; - out_state = out_state<<1 | out_state>>7; - } - } - } - /* - for (int i=0; i<FOO; i++) ; - set_outputs(0x1); - for (int i=0; i<FOO; i++) ; - set_outputs(0x2); - for (int i=0; i<FOO; i++) ; - set_outputs(0x4); - for (int i=0; i<FOO; i++) ; - set_outputs(0x8); - */ - //for (int i=0; i<8*FOO; i++) ; - //GPIOA->ODR ^= 4; - } -} - -void NMI_Handler(void) { -} - -void HardFault_Handler(void) __attribute__((naked)); -void HardFault_Handler() { - asm volatile ("bkpt"); -} - -void SVC_Handler(void) { -} - - -void PendSV_Handler(void) { -} - -void SysTick_Handler(void) { - static int n = 0; - sys_time++; - if (n++ == 1000) { - n = 0; - sys_time_seconds++; - } -} - diff --git a/gm_platform/fw/openocd.cfg b/gm_platform/fw/openocd.cfg deleted file mode 100644 index ce164b7..0000000 --- a/gm_platform/fw/openocd.cfg +++ /dev/null @@ -1,17 +0,0 @@ -telnet_port 4445 -gdb_port 3334 -tcl_port 6667 - -source [find interface/stlink-v2.cfg] -#interface jlink -#interface stlink-v2 -#adapter_khz 10000 -#transport select swd - -#source /usr/share/openocd/scripts/target/stm32f0x.cfg -source [find target/stm32f0x_stlink.cfg] - -init -arm semihosting enable - -#flash bank sysflash.alias stm32f0x 0x00000000 0 0 0 $_TARGETNAME diff --git a/gm_platform/fw/packet_interface.c b/gm_platform/fw/packet_interface.c deleted file mode 100644 index 099993b..0000000 --- a/gm_platform/fw/packet_interface.c +++ /dev/null @@ -1,46 +0,0 @@ - -#include "packet_interface.h" -#include "cobs.h" - -void usart2_isr(void) { - TRACING_SET(TR_HOST_IF_USART_IRQ); - static struct cobs_decode_state host_cobs_state = {0}; - if (USART2_SR & USART_SR_ORE) { /* Overrun handling */ - LOG_PRINTF("USART2 data register overrun\n"); - /* Clear interrupt flag */ - (void)USART2_DR; /* FIXME make sure this read is not optimized out */ - host_packet_length = -1; - TRACING_CLEAR(TR_HOST_IF_USART_IRQ); - return; - } - - uint8_t data = USART2_DR; /* This automatically acknowledges the IRQ */ - - if (host_packet_length) { - LOG_PRINTF("USART2 COBS buffer overrun\n"); - host_packet_length = -1; - TRACING_CLEAR(TR_HOST_IF_USART_IRQ); - return; - } - - ssize_t rv = cobs_decode_incremental(&host_cobs_state, (char *)host_packet_buf, sizeof(host_packet_buf), data); - if (rv == -2) { - LOG_PRINTF("Host interface COBS packet too large\n"); - host_packet_length = -1; - } else if (rv == -3) { - LOG_PRINTF("Got double null byte from host\n"); - } else if (rv < 0) { - LOG_PRINTF("Host interface COBS framing error\n"); - host_packet_length = -1; - } else if (rv > 0) { - host_packet_length = rv; - } /* else just return and wait for next byte */ - TRACING_CLEAR(TR_HOST_IF_USART_IRQ); -} - -void send_packet(struct dma_usart_file *f, const uint8_t *data, size_t len) { - /* ignore return value as putf is blocking and always succeeds */ - (void)cobs_encode_incremental(f, putf, (char *)data, len); - flush(f); -} - diff --git a/gm_platform/fw/packet_interface.h b/gm_platform/fw/packet_interface.h deleted file mode 100644 index dbace62..0000000 --- a/gm_platform/fw/packet_interface.h +++ /dev/null @@ -1,6 +0,0 @@ -#ifndef __PACKET_INTERFACE_H__ -#define __PACKET_INTERFACE_H__ - -void send_packet(struct dma_usart_file *f, const uint8_t *data, size_t len); - -#endif diff --git a/gm_platform/fw/reader.py b/gm_platform/fw/reader.py deleted file mode 100644 index c60edb7..0000000 --- a/gm_platform/fw/reader.py +++ /dev/null @@ -1,30 +0,0 @@ -#!/usr/bin/env python3 - -import struct - -import sqlite3 - -import serial -from cobs import cobs - -if __name__ == '__main__': - import argparse - - parser = argparse.ArgumentParser() - parser.add_argument('-b', '--baudrate', type=int, default=250000) - parser.add_argument('port') - parser.add_argument('dbfile') - args = parser.parse_args() - - db = sqlite3.connect(args.db) - ser = serial.Serial(args.port, args.baudrate) - - while True: - packet = ser.read_until(b'\0') - try: - packet = cobs.decode(packet) - crc, seq, struct.decode('IBxH', packet[:8]) - - except Exception as e: - print(e) - diff --git a/gm_platform/fw/scope.gdb b/gm_platform/fw/scope.gdb deleted file mode 100644 index 01366fa..0000000 --- a/gm_platform/fw/scope.gdb +++ /dev/null @@ -1,12 +0,0 @@ -target remote 192.168.178.103:3334 -set pagination off -file main.elf -load - -break gdb_dump -command 1 - dump binary value /tmp/scope_dump.bin adc_buf - continue -end - -continue diff --git a/gm_platform/fw/serial.c b/gm_platform/fw/serial.c deleted file mode 100644 index ae05fc9..0000000 --- a/gm_platform/fw/serial.c +++ /dev/null @@ -1,251 +0,0 @@ -#include "global.h"
-#include "serial.h"
-#include "cobs.h"
-
-#include <string.h>
-#include <stdarg.h>
-#include <stdlib.h>
-
-volatile struct dma_tx_buf usart_tx_buf;
-
-static uint32_t tx_overruns=0, rx_overruns=0;
-static uint32_t rx_framing_errors=0, rx_protocol_errors=0;
-
-static struct cobs_decode_state cobs_state;
-
-static volatile uint8_t rx_buf[32];
-
-
-static void usart_schedule_dma(void);
-static int usart_putc_nonblocking(uint8_t c);
-
-
-void usart_dma_reset() {
- usart_tx_buf.xfr_start = -1;
- usart_tx_buf.xfr_end = 0;
- usart_tx_buf.wr_pos = 0;
- usart_tx_buf.wr_idx = 0;
- usart_tx_buf.xfr_next = 0;
- usart_tx_buf.wraparound = false;
- usart_tx_buf.ack = true;
-
- for (size_t i=0; i<ARRAY_LEN(usart_tx_buf.packet_end); i++)
- usart_tx_buf.packet_end[i] = -1;
-
- cobs_decode_incremental_initialize(&cobs_state);
-}
-
-void usart_dma_init() {
- usart_dma_reset();
-
- /* Configure DMA 1 Channel 2 to handle uart transmission */
- DMA1_Channel2->CPAR = (uint32_t)&(USART1->TDR);
- DMA1_Channel2->CCR = (0<<DMA_CCR_PL_Pos)
- | DMA_CCR_DIR
- | (0<<DMA_CCR_MSIZE_Pos) /* 8 bit */
- | (0<<DMA_CCR_PSIZE_Pos) /* 8 bit */
- | DMA_CCR_MINC
- | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
-
- DMA1_Channel3->CMAR = (uint32_t)&(CRC->DR);
- DMA1_Channel3->CCR = (1<<DMA_CCR_PL_Pos)
- | (0<<DMA_CCR_MSIZE_Pos) /* 8 bit */
- | (0<<DMA_CCR_PSIZE_Pos) /* 8 bit */
- | DMA_CCR_PINC
- | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
-
- /* triggered on transfer completion. We use this to process the ADC data */
- NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
- NVIC_SetPriority(DMA1_Channel2_3_IRQn, 2<<5);
-
- USART1->CR1 = /* 8-bit -> M1, M0 clear */
- /* OVER8 clear. Use default 16x oversampling */
- /* CMIF clear */
- USART_CR1_MME
- /* WAKE clear */
- /* PCE, PS clear */
- | USART_CR1_RXNEIE /* Enable receive interrupt */
- /* other interrupts clear */
- | USART_CR1_TE
- | USART_CR1_RE;
- /* Set divider for 115.2kBd @48MHz system clock. */
- //USART1->BRR = 417;
-
- //USART1->BRR = 48; /* 1MBd */
- //USART1->BRR = 96; /* 500kBd */
- USART1->BRR = 192; /* 250kBd */
- //USART1->BRR = 208; /* 230400 */
-
- USART1->CR2 = USART_CR2_TXINV | USART_CR2_RXINV;
-
- USART1->CR3 |= USART_CR3_DMAT; /* TX DMA enable */
-
- /* Enable receive interrupt */
- NVIC_EnableIRQ(USART1_IRQn);
- NVIC_SetPriority(USART1_IRQn, 1<<5);
-
- /* And... go! */
- USART1->CR1 |= USART_CR1_UE;
-}
-
-void USART1_IRQHandler() {
- uint32_t isr = USART1->ISR;
-
- if (isr & USART_ISR_ORE) {
- USART1->ICR = USART_ICR_ORECF;
- rx_overruns++;
- return;
- }
-
- if (isr & USART_ISR_RXNE) {
- uint8_t c = USART1->RDR;
-
- int rc = cobs_decode_incremental(&cobs_state, (char *)rx_buf, sizeof(rx_buf), c);
- if (rc == 0) /* packet still incomplete */
- return;
-
- if (rc < 0) {
- rx_framing_errors++;
- return;
- }
-
- /* A complete frame received */
- if (rc != 2) {
- rx_protocol_errors++;
- return;
- }
-
- volatile struct ctrl_pkt *pkt = (volatile struct ctrl_pkt *)rx_buf;
-
- switch (pkt->type) {
- case CTRL_PKT_RESET:
- usart_dma_reset();
- break;
-
- case CTRL_PKT_ACK:
- usart_tx_buf.ack = true;
- if (!(DMA1_Channel2->CCR & DMA_CCR_EN))
- usart_schedule_dma();
- break;
-
- default:
- rx_protocol_errors++;
- }
- return;
- }
-}
-
-
-void usart_schedule_dma() {
- volatile struct dma_tx_buf *buf = &usart_tx_buf;
-
- ssize_t xfr_start, xfr_end, xfr_len;
- if (buf->wraparound) {
- buf->wraparound = false;
- xfr_start = 0;
- xfr_len = buf->xfr_end;
- xfr_end = buf->xfr_end;
-
- } else if (buf->ack) {
- if (buf->packet_end[buf->xfr_next] == -1)
- return; /* Nothing to trasnmit */
-
- buf->ack = false;
-
- xfr_start = buf->xfr_end;
- xfr_end = buf->packet_end[buf->xfr_next];
- buf->packet_end[buf->xfr_next] = -1;
- buf->xfr_next = (buf->xfr_next + 1) % ARRAY_LEN(buf->packet_end);
-
- if (xfr_end > xfr_start) { /* no wraparound */
- xfr_len = xfr_end - xfr_start;
-
- } else { /* wraparound */
- if (xfr_end != 0)
- buf->wraparound = true;
- xfr_len = sizeof(buf->data) - xfr_start;
- }
-
- } else {
- /* retransmit */
- /* First, send a zero to delimit any garbage from the following good packet */
- USART1->TDR = 0x00;
-
- xfr_start = buf->xfr_start;
- xfr_end = buf->xfr_end;
-
- if (xfr_end > xfr_start) { /* no wraparound */
- xfr_len = xfr_end - xfr_start;
-
- } else { /* wraparound */
- if (xfr_end != 0)
- buf->wraparound = true;
- xfr_len = sizeof(buf->data) - xfr_start;
- }
-
- leds.error = 250;
- }
-
- buf->xfr_start = xfr_start;
- buf->xfr_end = xfr_end;
-
- /* initiate transmission of new buffer */
- DMA1_Channel2->CMAR = (uint32_t)(buf->data + xfr_start);
- DMA1_Channel2->CNDTR = xfr_len;
- DMA1_Channel2->CCR |= DMA_CCR_EN;
-}
-
-int usart_putc_nonblocking(uint8_t c) {
- volatile struct dma_tx_buf *buf = &usart_tx_buf;
-
- if (buf->wr_pos == buf->xfr_start)
- return -EBUSY;
-
- buf->data[buf->wr_pos] = c;
- buf->wr_pos = (buf->wr_pos + 1) % sizeof(buf->data);
- return 0;
-}
-
-
-void DMA1_Channel2_3_IRQHandler(void) {
- /* Transfer complete */
- DMA1->IFCR |= DMA_IFCR_CTCIF2;
-
- DMA1_Channel2->CCR &= ~DMA_CCR_EN;
- if (usart_tx_buf.wraparound)
- usart_schedule_dma();
-}
-
-/* len is the packet length including headers */
-int usart_send_packet_nonblocking(struct ll_pkt *pkt, size_t pkt_len) {
-
- if (usart_tx_buf.packet_end[usart_tx_buf.wr_idx] != -1) {
- /* Find a free slot for this packet */
- tx_overruns++;
- return -EBUSY;
- }
-
- pkt->pid = usart_tx_buf.wr_idx;
- pkt->_pad = usart_tx_buf.xfr_next;
-
- /* make the value this wonky-ass CRC implementation produces match zlib etc. */
- CRC->CR = CRC_CR_REV_OUT | (1<<CRC_CR_REV_IN_Pos) | CRC_CR_RESET;
- for (size_t i=offsetof(struct ll_pkt, pid); i<pkt_len; i++)
- CRC->DR = ((uint8_t *)pkt)[i];
-
- pkt->crc32 = ~CRC->DR;
-
- int rc = cobs_encode_usart((int (*)(char))usart_putc_nonblocking, (char *)pkt, pkt_len);
- if (rc)
- return rc;
-
- usart_tx_buf.packet_end[usart_tx_buf.wr_idx] = usart_tx_buf.wr_pos;
- usart_tx_buf.wr_idx = (usart_tx_buf.wr_idx + 1) % ARRAY_LEN(usart_tx_buf.packet_end);
-
- leds.usb = 100;
-
- if (!(DMA1_Channel2->CCR & DMA_CCR_EN))
- usart_schedule_dma();
- return 0;
-}
-
diff --git a/gm_platform/fw/serial.h b/gm_platform/fw/serial.h deleted file mode 100644 index 8cec089..0000000 --- a/gm_platform/fw/serial.h +++ /dev/null @@ -1,75 +0,0 @@ -/*
- * This file is part of the libusbhost library
- * hosted at http://github.com/libusbhost/libusbhost
- *
- * Copyright (C) 2015 Amir Hammad <amir.hammad@hotmail.com>
- *
- *
- * libusbhost is free software: you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this library. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
-#ifndef __SERIAL_H__
-#define __SERIAL_H__
-
-#include <stdint.h>
-#include <stdarg.h>
-#include <errno.h>
-#include <stdbool.h>
-
-#include "global.h"
-
-struct dma_tx_buf {
- /* The following fields are accessed only from DMA ISR */
- ssize_t xfr_start; /* Start index of running DMA transfer */
- ssize_t xfr_end; /* End index of running DMA transfer plus one */
- bool wraparound;
- ssize_t xfr_next;
- bool ack;
-
-
- /* The following fields are written only from non-interrupt code */
- ssize_t wr_pos; /* Next index to be written */
- ssize_t wr_idx;
- ssize_t packet_end[8];
-
- /* The following may be accessed by anything */
- uint8_t data[512];
-};
-
-struct __attribute__((__packed__)) ll_pkt {
- uint32_t crc32;
- /* CRC computed over entire packet starting here */
- uint8_t pid;
- uint8_t _pad;
- uint8_t data[];
-};
-
-enum ctrl_pkt_type {
- CTRL_PKT_RESET = 1,
- CTRL_PKT_ACK = 2,
-};
-
-struct __attribute__((__packed__)) ctrl_pkt {
- uint8_t type;
- uint8_t orig_id;
-};
-
-extern volatile struct dma_tx_buf usart_tx_buf;
-
-void usart_dma_init(void);
-int usart_send_packet_nonblocking(struct ll_pkt *pkt, size_t pkt_len);
-int usart_ack_packet(uint8_t idx);
-
-#endif // __SERIAL_H__
diff --git a/gm_platform/fw/startup_stm32f030x6.s b/gm_platform/fw/startup_stm32f030x6.s deleted file mode 100644 index 2f0eb42..0000000 --- a/gm_platform/fw/startup_stm32f030x6.s +++ /dev/null @@ -1,273 +0,0 @@ -/**
- ******************************************************************************
- * @file startup_stm32f030x6.s
- * copied from: STM32Cube/Drivers/CMSIS/Device/ST/STM32F0xx/Source/Templates/gcc
- * @author MCD Application Team
- * @version V2.3.1
- * @date 04-November-2016
- * @brief STM32F030x4/STM32F030x6 devices vector table for Atollic TrueSTUDIO toolchain.
- * This module performs:
- * - Set the initial SP
- * - Set the initial PC == Reset_Handler,
- * - Set the vector table entries with the exceptions ISR address
- * - Branches to main in the C library (which eventually
- * calls main()).
- * After Reset the Cortex-M0 processor is in Thread mode,
- * priority is Privileged, and the Stack is set to Main.
- ******************************************************************************
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
- .syntax unified
- .cpu cortex-m0
- .fpu softvfp
- .thumb
-
-.global g_pfnVectors
-.global Default_Handler
-
-/* start address for the initialization values of the .data section.
-defined in linker script */
-.word _sidata
-/* start address for the .data section. defined in linker script */
-.word _sdata
-/* end address for the .data section. defined in linker script */
-.word _edata
-/* start address for the .bss section. defined in linker script */
-.word _sbss
-/* end address for the .bss section. defined in linker script */
-.word _ebss
-
- .section .text.Reset_Handler
- .weak Reset_Handler
- .type Reset_Handler, %function
-Reset_Handler:
- ldr r0, =_estack
- mov sp, r0 /* set stack pointer */
-
-/* Copy the data segment initializers from flash to SRAM */
- movs r1, #0
- b LoopCopyDataInit
-
-CopyDataInit:
- ldr r3, =_sidata
- ldr r3, [r3, r1]
- str r3, [r0, r1]
- adds r1, r1, #4
-
-LoopCopyDataInit:
- ldr r0, =_sdata
- ldr r3, =_edata
- adds r2, r0, r1
- cmp r2, r3
- bcc CopyDataInit
- ldr r2, =_sbss
- b LoopFillZerobss
-/* Zero fill the bss segment. */
-FillZerobss:
- movs r3, #0
- str r3, [r2]
- adds r2, r2, #4
-
-
-LoopFillZerobss:
- ldr r3, = _ebss
- cmp r2, r3
- bcc FillZerobss
-
-/* Call the clock system intitialization function.*/
- bl SystemInit
-/* Call static constructors */
-// bl __libc_init_array
-/* Call the application's entry point.*/
- bl main
-
-LoopForever:
- b LoopForever
-
-
-.size Reset_Handler, .-Reset_Handler
-
-/**
- * @brief This is the code that gets called when the processor receives an
- * unexpected interrupt. This simply enters an infinite loop, preserving
- * the system state for examination by a debugger.
- *
- * @param None
- * @retval : None
-*/
- .section .text.Default_Handler,"ax",%progbits
-Default_Handler:
-Infinite_Loop:
- b Infinite_Loop
- .size Default_Handler, .-Default_Handler
-/******************************************************************************
-*
-* The minimal vector table for a Cortex M0. Note that the proper constructs
-* must be placed on this to ensure that it ends up at physical address
-* 0x0000.0000.
-*
-******************************************************************************/
- .section .isr_vector,"a",%progbits
- .type g_pfnVectors, %object
- .size g_pfnVectors, .-g_pfnVectors
-
-
-g_pfnVectors:
- .word _estack
- .word Reset_Handler
- .word NMI_Handler
- .word HardFault_Handler
- .word 0
- .word 0
- .word 0
- .word 0
- .word 0
- .word 0
- .word 0
- .word SVC_Handler
- .word 0
- .word 0
- .word PendSV_Handler
- .word SysTick_Handler
- .word WWDG_IRQHandler /* Window WatchDog */
- .word 0 /* Reserved */
- .word RTC_IRQHandler /* RTC through the EXTI line */
- .word FLASH_IRQHandler /* FLASH */
- .word RCC_IRQHandler /* RCC */
- .word EXTI0_1_IRQHandler /* EXTI Line 0 and 1 */
- .word EXTI2_3_IRQHandler /* EXTI Line 2 and 3 */
- .word EXTI4_15_IRQHandler /* EXTI Line 4 to 15 */
- .word 0 /* Reserved */
- .word DMA1_Channel1_IRQHandler /* DMA1 Channel 1 */
- .word DMA1_Channel2_3_IRQHandler /* DMA1 Channel 2 and Channel 3 */
- .word DMA1_Channel4_5_IRQHandler /* DMA1 Channel 4 and Channel 5 */
- .word ADC1_IRQHandler /* ADC1 */
- .word TIM1_BRK_UP_TRG_COM_IRQHandler /* TIM1 Break, Update, Trigger and Commutation */
- .word TIM1_CC_IRQHandler /* TIM1 Capture Compare */
- .word 0 /* Reserved */
- .word TIM3_IRQHandler /* TIM3 */
- .word 0 /* Reserved */
- .word 0 /* Reserved */
- .word TIM14_IRQHandler /* TIM14 */
- .word 0 /* Reserved */
- .word TIM16_IRQHandler /* TIM16 */
- .word TIM17_IRQHandler /* TIM17 */
- .word I2C1_IRQHandler /* I2C1 */
- .word 0 /* Reserved */
- .word SPI1_IRQHandler /* SPI1 */
- .word 0 /* Reserved */
- .word USART1_IRQHandler /* USART1 */
- .word 0 /* Reserved */
- .word 0 /* Reserved */
- .word 0 /* Reserved */
- .word 0 /* Reserved */
-
-/*******************************************************************************
-*
-* Provide weak aliases for each Exception handler to the Default_Handler.
-* As they are weak aliases, any function with the same name will override
-* this definition.
-*
-*******************************************************************************/
-
- .weak NMI_Handler
- .thumb_set NMI_Handler,Default_Handler
-
- .weak HardFault_Handler
- .thumb_set HardFault_Handler,Default_Handler
-
- .weak SVC_Handler
- .thumb_set SVC_Handler,Default_Handler
-
- .weak PendSV_Handler
- .thumb_set PendSV_Handler,Default_Handler
-
- .weak SysTick_Handler
- .thumb_set SysTick_Handler,Default_Handler
-
- .weak WWDG_IRQHandler
- .thumb_set WWDG_IRQHandler,Default_Handler
-
- .weak RTC_IRQHandler
- .thumb_set RTC_IRQHandler,Default_Handler
-
- .weak FLASH_IRQHandler
- .thumb_set FLASH_IRQHandler,Default_Handler
-
- .weak RCC_IRQHandler
- .thumb_set RCC_IRQHandler,Default_Handler
-
- .weak EXTI0_1_IRQHandler
- .thumb_set EXTI0_1_IRQHandler,Default_Handler
-
- .weak EXTI2_3_IRQHandler
- .thumb_set EXTI2_3_IRQHandler,Default_Handler
-
- .weak EXTI4_15_IRQHandler
- .thumb_set EXTI4_15_IRQHandler,Default_Handler
-
- .weak DMA1_Channel1_IRQHandler
- .thumb_set DMA1_Channel1_IRQHandler,Default_Handler
-
- .weak DMA1_Channel2_3_IRQHandler
- .thumb_set DMA1_Channel2_3_IRQHandler,Default_Handler
-
- .weak DMA1_Channel4_5_IRQHandler
- .thumb_set DMA1_Channel4_5_IRQHandler,Default_Handler
-
- .weak ADC1_IRQHandler
- .thumb_set ADC1_IRQHandler,Default_Handler
-
- .weak TIM1_BRK_UP_TRG_COM_IRQHandler
- .thumb_set TIM1_BRK_UP_TRG_COM_IRQHandler,Default_Handler
-
- .weak TIM1_CC_IRQHandler
- .thumb_set TIM1_CC_IRQHandler,Default_Handler
-
- .weak TIM3_IRQHandler
- .thumb_set TIM3_IRQHandler,Default_Handler
-
- .weak TIM14_IRQHandler
- .thumb_set TIM14_IRQHandler,Default_Handler
-
- .weak TIM16_IRQHandler
- .thumb_set TIM16_IRQHandler,Default_Handler
-
- .weak TIM17_IRQHandler
- .thumb_set TIM17_IRQHandler,Default_Handler
-
- .weak I2C1_IRQHandler
- .thumb_set I2C1_IRQHandler,Default_Handler
-
- .weak SPI1_IRQHandler
- .thumb_set SPI1_IRQHandler,Default_Handler
-
- .weak USART1_IRQHandler
- .thumb_set USART1_IRQHandler,Default_Handler
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
-
diff --git a/gm_platform/fw/stm32_flash.ld b/gm_platform/fw/stm32_flash.ld deleted file mode 100644 index cba7577..0000000 --- a/gm_platform/fw/stm32_flash.ld +++ /dev/null @@ -1,136 +0,0 @@ -
-ENTRY(Reset_Handler)
-
-MEMORY {
- FLASH (rx): ORIGIN = 0x08000000, LENGTH = 0x3C00
- CONFIGFLASH (rw): ORIGIN = 0x08003C00, LENGTH = 0x400
- RAM (xrw): ORIGIN = 0x20000000, LENGTH = 4K
-}
-
-/* highest address of the user mode stack */
-_estack = 0x20001000;
-
-SECTIONS {
- /* for Cortex devices, the beginning of the startup code is stored in the .isr_vector section, which goes to FLASH */
- .isr_vector : {
- . = ALIGN(4);
- KEEP(*(.isr_vector)) /* Startup code */
- . = ALIGN(4);
- } >FLASH
-
- /* the program code is stored in the .text section, which goes to Flash */
- .text : {
- . = ALIGN(4);
-
- *(.text) /* normal code */
- *(.text.*) /* -ffunction-sections code */
- *(.rodata) /* read-only data (constants) */
- *(.rodata*) /* -fdata-sections read only data */
- *(.glue_7) /* TBD - needed ? */
- *(.glue_7t) /* TBD - needed ? */
-
- *(.source_tarball)
-
- /* Necessary KEEP sections (see http://sourceware.org/ml/newlib/2005/msg00255.html) */
- KEEP (*(.init))
- KEEP (*(.fini))
- KEEP (*(.source_tarball))
-
- . = ALIGN(4);
- _etext = .;
- /* This is used by the startup in order to initialize the .data section */
- _sidata = _etext;
- } >FLASH
-
- /*
- .configflash : {
- . = ALIGN(0x400);
- *(.configdata)
- _econfig = .;
- } >FLASH
- */
-
- /* This is the initialized data section
- The program executes knowing that the data is in the RAM
- but the loader puts the initial values in the FLASH (inidata).
- It is one task of the startup to copy the initial values from FLASH to RAM. */
- .data : AT ( _sidata ) {
- . = ALIGN(4);
- /* This is used by the startup in order to initialize the .data secion */
- _sdata = . ;
- _data = . ;
-
- *(.data)
- *(.data.*)
- *(.RAMtext)
-
- . = ALIGN(4);
- /* This is used by the startup in order to initialize the .data secion */
- _edata = . ;
- } >RAM
-
- /* This is the uninitialized data section */
- .bss : {
- . = ALIGN(4);
- /* This is used by the startup in order to initialize the .bss secion */
- _sbss = .;
- _bss = .;
-
- *(.bss)
- *(.bss.*) /* patched by elias - allows the use of -fdata-sections */
- *(COMMON)
-
- . = ALIGN(4);
- /* This is used by the startup in order to initialize the .bss secion */
- _ebss = . ;
- } >RAM
-
- PROVIDE ( end = _ebss);
- PROVIDE (_end = _ebss);
-
- __exidx_start = .;
- __exidx_end = .;
-
- /* after that it's only debugging information. */
-
- /* remove the debugging information from the standard libraries */
-/* /DISCARD/ : {
- libc.a ( * )
- libm.a ( * )
- libgcc.a ( * )
- }*/
-
- /* Stabs debugging sections. */
- .stab 0 : { *(.stab) }
- .stabstr 0 : { *(.stabstr) }
- .stab.excl 0 : { *(.stab.excl) }
- .stab.exclstr 0 : { *(.stab.exclstr) }
- .stab.index 0 : { *(.stab.index) }
- .stab.indexstr 0 : { *(.stab.indexstr) }
- .comment 0 : { *(.comment) }
- /* DWARF debug sections.
- Symbols in the DWARF debugging sections are relative to the beginning
- of the section so we begin them at 0. */
- /* DWARF 1 */
- .debug 0 : { *(.debug) }
- .line 0 : { *(.line) }
- /* GNU DWARF 1 extensions */
- .debug_srcinfo 0 : { *(.debug_srcinfo) }
- .debug_sfnames 0 : { *(.debug_sfnames) }
- /* DWARF 1.1 and DWARF 2 */
- .debug_aranges 0 : { *(.debug_aranges) }
- .debug_pubnames 0 : { *(.debug_pubnames) }
- /* DWARF 2 */
- .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
- .debug_abbrev 0 : { *(.debug_abbrev) }
- .debug_line 0 : { *(.debug_line) }
- .debug_frame 0 : { *(.debug_frame) }
- .debug_str 0 : { *(.debug_str) }
- .debug_loc 0 : { *(.debug_loc) }
- .debug_macinfo 0 : { *(.debug_macinfo) }
- /* SGI/MIPS DWARF 2 extensions */
- .debug_weaknames 0 : { *(.debug_weaknames) }
- .debug_funcnames 0 : { *(.debug_funcnames) }
- .debug_typenames 0 : { *(.debug_typenames) }
- .debug_varnames 0 : { *(.debug_varnames) }
-}
diff --git a/gm_platform/fw/system_stm32f0xx.c b/gm_platform/fw/system_stm32f0xx.c deleted file mode 100644 index a43c3d6..0000000 --- a/gm_platform/fw/system_stm32f0xx.c +++ /dev/null @@ -1,336 +0,0 @@ -/**
- ******************************************************************************
- * @file system_stm32f0xx.c
- * copied from: STM32Cube/Drivers/CMSIS/Device/ST/STM32F0xx/Source/Templates
- * @author MCD Application Team
- * @version V2.3.1
- * @date 04-November-2016
- * @brief CMSIS Cortex-M0 Device Peripheral Access Layer System Source File.
- *
- * 1. This file provides two functions and one global variable to be called from
- * user application:
- * - SystemInit(): This function is called at startup just after reset and
- * before branch to main program. This call is made inside
- * the "startup_stm32f0xx.s" file.
- *
- * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
- * by the user application to setup the SysTick
- * timer or configure other parameters.
- *
- * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
- * be called whenever the core clock is changed
- * during program execution.
- *
- * 2. After each device reset the HSI (8 MHz) is used as system clock source.
- * Then SystemInit() function is called, in "startup_stm32f0xx.s" file, to
- * configure the system clock before to branch to main program.
- *
- * 3. This file configures the system clock as follows:
- *=============================================================================
- * Supported STM32F0xx device
- *-----------------------------------------------------------------------------
- * System Clock source | HSI
- *-----------------------------------------------------------------------------
- * SYSCLK(Hz) | 8000000
- *-----------------------------------------------------------------------------
- * HCLK(Hz) | 8000000
- *-----------------------------------------------------------------------------
- * AHB Prescaler | 1
- *-----------------------------------------------------------------------------
- * APB1 Prescaler | 1
- *-----------------------------------------------------------------------------
- *=============================================================================
- ******************************************************************************
- * @attention
- *
- * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/** @addtogroup CMSIS
- * @{
- */
-
-/** @addtogroup stm32f0xx_system
- * @{
- */
-
-/** @addtogroup STM32F0xx_System_Private_Includes
- * @{
- */
-
-#include "stm32f0xx.h"
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_TypesDefinitions
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_Defines
- * @{
- */
-#if !defined (HSE_VALUE)
- #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSE_VALUE */
-
-#if !defined (HSI_VALUE)
- #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSI_VALUE */
-
-#if !defined (HSI48_VALUE)
-#define HSI48_VALUE ((uint32_t)48000000) /*!< Default value of the HSI48 Internal oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSI48_VALUE */
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_Macros
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_Variables
- * @{
- */
- /* This variable is updated in three ways:
- 1) by calling CMSIS function SystemCoreClockUpdate()
- 2) by calling HAL API function HAL_RCC_GetHCLKFreq()
- 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
- Note: If you use this function to configure the system clock there is no need to
- call the 2 first functions listed above, since SystemCoreClock variable is
- updated automatically.
- */
-uint32_t SystemCoreClock = 8000000;
-
-const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
-const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_FunctionPrototypes
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F0xx_System_Private_Functions
- * @{
- */
-
-/**
- * @brief Setup the microcontroller system.
- * Initialize the default HSI clock source, vector table location and the PLL configuration is reset.
- * @param None
- * @retval None
- */
-void SystemInit(void)
-{
- /* Reset the RCC clock configuration to the default reset state ------------*/
- /* Set HSION bit */
- RCC->CR |= (uint32_t)0x00000001U;
-
-#if defined (STM32F051x8) || defined (STM32F058x8)
- /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE and MCOSEL[2:0] bits */
- RCC->CFGR &= (uint32_t)0xF8FFB80CU;
-#else
- /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] and PLLNODIV bits */
- RCC->CFGR &= (uint32_t)0x08FFB80CU;
-#endif /* STM32F051x8 or STM32F058x8 */
-
- /* Reset HSEON, CSSON and PLLON bits */
- RCC->CR &= (uint32_t)0xFEF6FFFFU;
-
- /* Reset HSEBYP bit */
- RCC->CR &= (uint32_t)0xFFFBFFFFU;
-
- /* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
- RCC->CFGR &= (uint32_t)0xFFC0FFFFU;
-
- /* Reset PREDIV[3:0] bits */
- RCC->CFGR2 &= (uint32_t)0xFFFFFFF0U;
-
-#if defined (STM32F072xB) || defined (STM32F078xx)
- /* Reset USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW, USBSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFCFE2CU;
-#elif defined (STM32F071xB)
- /* Reset USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFFCEACU;
-#elif defined (STM32F091xC) || defined (STM32F098xx)
- /* Reset USART3SW[1:0], USART2SW[1:0], USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFF0FEACU;
-#elif defined (STM32F030x6) || defined (STM32F030x8) || defined (STM32F031x6) || defined (STM32F038xx) || defined (STM32F030xC)
- /* Reset USART1SW[1:0], I2C1SW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFFFEECU;
-#elif defined (STM32F051x8) || defined (STM32F058xx)
- /* Reset USART1SW[1:0], I2C1SW, CECSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFFFEACU;
-#elif defined (STM32F042x6) || defined (STM32F048xx)
- /* Reset USART1SW[1:0], I2C1SW, CECSW, USBSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFFFE2CU;
-#elif defined (STM32F070x6) || defined (STM32F070xB)
- /* Reset USART1SW[1:0], I2C1SW, USBSW and ADCSW bits */
- RCC->CFGR3 &= (uint32_t)0xFFFFFE6CU;
- /* Set default USB clock to PLLCLK, since there is no HSI48 */
- RCC->CFGR3 |= (uint32_t)0x00000080U;
-#else
- #warning "No target selected"
-#endif
-
- /* Reset HSI14 bit */
- RCC->CR2 &= (uint32_t)0xFFFFFFFEU;
-
- /* Disable all interrupts */
- RCC->CIR = 0x00000000U;
-
-}
-
-/**
- * @brief Update SystemCoreClock variable according to Clock Register Values.
- * The SystemCoreClock variable contains the core clock (HCLK), it can
- * be used by the user application to setup the SysTick timer or configure
- * other parameters.
- *
- * @note Each time the core clock (HCLK) changes, this function must be called
- * to update SystemCoreClock variable value. Otherwise, any configuration
- * based on this variable will be incorrect.
- *
- * @note - The system frequency computed by this function is not the real
- * frequency in the chip. It is calculated based on the predefined
- * constant and the selected clock source:
- *
- * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
- *
- * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
- *
- * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
- * or HSI_VALUE(*) multiplied/divided by the PLL factors.
- *
- * (*) HSI_VALUE is a constant defined in stm32f0xx_hal.h file (default value
- * 8 MHz) but the real value may vary depending on the variations
- * in voltage and temperature.
- *
- * (**) HSE_VALUE is a constant defined in stm32f0xx_hal.h file (default value
- * 8 MHz), user has to ensure that HSE_VALUE is same as the real
- * frequency of the crystal used. Otherwise, this function may
- * have wrong result.
- *
- * - The result of this function could be not correct when using fractional
- * value for HSE crystal.
- *
- * @param None
- * @retval None
- */
-void SystemCoreClockUpdate (void)
-{
- uint32_t tmp = 0, pllmull = 0, pllsource = 0, predivfactor = 0;
-
- /* Get SYSCLK source -------------------------------------------------------*/
- tmp = RCC->CFGR & RCC_CFGR_SWS;
-
- switch (tmp)
- {
- case RCC_CFGR_SWS_HSI: /* HSI used as system clock */
- SystemCoreClock = HSI_VALUE;
- break;
- case RCC_CFGR_SWS_HSE: /* HSE used as system clock */
- SystemCoreClock = HSE_VALUE;
- break;
- case RCC_CFGR_SWS_PLL: /* PLL used as system clock */
- /* Get PLL clock source and multiplication factor ----------------------*/
- pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
- pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
- pllmull = ( pllmull >> 18) + 2;
- predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1;
-
- if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
- {
- /* HSE used as PLL clock source : SystemCoreClock = HSE/PREDIV * PLLMUL */
- SystemCoreClock = (HSE_VALUE/predivfactor) * pllmull;
- }
-#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
- else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
- {
- /* HSI48 used as PLL clock source : SystemCoreClock = HSI48/PREDIV * PLLMUL */
- SystemCoreClock = (HSI48_VALUE/predivfactor) * pllmull;
- }
-#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F091xC || STM32F098xx */
- else
- {
-#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) \
- || defined(STM32F078xx) || defined(STM32F071xB) || defined(STM32F072xB) \
- || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC)
- /* HSI used as PLL clock source : SystemCoreClock = HSI/PREDIV * PLLMUL */
- SystemCoreClock = (HSI_VALUE/predivfactor) * pllmull;
-#else
- /* HSI used as PLL clock source : SystemCoreClock = HSI/2 * PLLMUL */
- SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
-#endif /* STM32F042x6 || STM32F048xx || STM32F070x6 ||
- STM32F071xB || STM32F072xB || STM32F078xx || STM32F070xB ||
- STM32F091xC || STM32F098xx || STM32F030xC */
- }
- break;
- default: /* HSI used as system clock */
- SystemCoreClock = HSI_VALUE;
- break;
- }
- /* Compute HCLK clock frequency ----------------*/
- /* Get HCLK prescaler */
- tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
- /* HCLK clock frequency */
- SystemCoreClock >>= tmp;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
-
diff --git a/gm_platform/fw/test.py b/gm_platform/fw/test.py deleted file mode 100644 index cb243a5..0000000 --- a/gm_platform/fw/test.py +++ /dev/null @@ -1,41 +0,0 @@ -#!/usr/bin/env python3 - -import serial -import time - -#ser = serial.Serial('/dev/serial/by-id/usb-1a86_USB2.0-Serial-if00-port0', 230400) -ser = serial.Serial('/dev/serial/by-id/usb-Silicon_Labs_CP2102_USB_to_UART_Bridge_Controller_0001-if00-port0', 250000) -#while True: -# ser.write(bytes(range(256))) -start = time.time() - -last_val = None -run = 0 -total_errors = 0 -rx_bytes = 0 -last_print = time.time() -while True: - bytes = ser.read(256) - for byte in bytes: - if last_val is not None and byte != (last_val + 1) % 256: - if run > 0: - print(f'{time.time()-start:>8.3f} {run} {last_val:02x} {byte:02x}') - run = 0 - total_errors += 1 - else: - run += 1 - rx_bytes += 1 - - if time.time() - last_print > 5: - last_print = time.time() - print(f'{time.time()-start:>8.3f} {run} [all good] err={total_errors}@rx={rx_bytes}B', - f'(rate 1/{rx_bytes/total_errors:.5g})' if total_errors > 0 else 'rate unknown') - last_val = byte - -#while True: -# data = ser.read_until(b'\0') -# print(f'{time.time()-start:>8.3f} {len(data)}') - -# while True: -# data = ser.read(256) -# print('YES' if b'\0' in data else 'NO ', data) diff --git a/gm_platform/fw/tools/gen_cmsis_exports.py b/gm_platform/fw/tools/gen_cmsis_exports.py deleted file mode 100644 index ba3422b..0000000 --- a/gm_platform/fw/tools/gen_cmsis_exports.py +++ /dev/null @@ -1,30 +0,0 @@ -#!/usr/bin/env python3 -import re -import os - -if __name__ == '__main__': - import argparse - - parser = argparse.ArgumentParser() - parser.add_argument('cmsis_device_header', nargs='+', type=argparse.FileType('rb')) - args = parser.parse_args() - - print('#ifndef __GENERATED_CMSIS_HEADER_EXPORTS__') - print('#define __GENERATED_CMSIS_HEADER_EXPORTS__') - print() - for header in args.cmsis_device_header: - lines = header.readlines() - name = os.path.basename(header.name) - print('#include <{}>'.format(name)) - print() - - print('/* {} */'.format(name)) - for l in lines: - match = re.match(b'^#define (\w+)\s+\W*(\w+_TypeDef|\w+_Type).*$', l) - if match: - inst, typedef = match.groups() - inst, typedef = inst.decode(), typedef.decode() - print('{} *{} = {};'.format(typedef, inst.lower(), inst)) - print() - print('#endif//__GENERATED_CMSIS_HEADER_EXPORTS__') - diff --git a/gm_platform/fw/tw_test.c b/gm_platform/fw/tw_test.c deleted file mode 100644 index eb41dbe..0000000 --- a/gm_platform/fw/tw_test.c +++ /dev/null @@ -1,450 +0,0 @@ -#include <errno.h> -#include <sys/ioctl.h> -#include <asm/termbits.h> -#include <fcntl.h> -#include <stdbool.h> -#include <stdlib.h> -#include <stdio.h> -#include <string.h> -#include <unistd.h> -#include <stdint.h> -#include <dirent.h> -#include <sys/types.h> -#include <assert.h> -#include <sys/epoll.h> -#include <time.h> - -#include <sqlite3.h> - -#include <zlib.h> - -int set_interface_attribs (int fd, int baudrate) { - struct termios2 tio; - memset (&tio, 0, sizeof(tio)); - if (ioctl (fd, TCGETS2, &tio) != 0) { - fprintf(stderr, "Could not request termios for given port\n"); - return -1; - } - - /* FIXME set baudrate */ - - tio.c_cflag = (tio.c_cflag & ~CSIZE) | CS8; /* 8 bit */ - /* disable IGNBRK for mismatched speed tests; otherwise receive break as \000 chars */ - tio.c_iflag &= ~IGNBRK; /* disable break processing */ - tio.c_lflag = 0; /* no signaling chars, no echo, no canonical processing */ - tio.c_oflag = 0; /* no remapping, no delays */ - - tio.c_iflag &= ~(IXON | IXOFF | IXANY); /* shut off xon/xoff ctrl */ - - tio.c_cflag |= (CLOCAL | CREAD);/* ignore modem controls, enable reading */ - tio.c_cflag &= ~(PARENB | PARODD); /* no parity */ - tio.c_cflag &= ~CSTOPB; - tio.c_cflag &= ~CRTSCTS; - - tio.c_cflag &= ~(CBAUD | CBAUDEX); - tio.c_cflag |= BOTHER; - tio.c_ospeed = baudrate; - tio.c_cflag &= ~((CBAUD | CBAUDEX) << IBSHIFT); - tio.c_cflag |= (B0 << IBSHIFT); /* same as output baudrate */ - - tio.c_cc[VMIN] = 0; /* non-blocking mode */ - tio.c_cc[VTIME] = 10; /* 1000ms seconds read timeout */ - - if (ioctl (fd, TCSETS2, &tio)) { - fprintf(stderr, "Could not set serial port attributes: Error %d in tcsetattr (\"%s\")\n", errno, strerror(errno)); - return -1; - } - return 0; -} - -ssize_t cobs_decode(char *dst, size_t dstlen, char *src, size_t srclen) { - size_t p = 1; - size_t c = (unsigned char)src[0]; - if (c == 0) - return -5; /* invalid framing. An empty frame would be [...] 00 01 00, not [...] 00 00 */ - - while (p < srclen && src[p]) { - char val; - c--; - - if (c == 0) { - c = (unsigned char)src[p]; - val = 0; - } else { - val = src[p]; - } - - if (p > dstlen) - return -4; /* Destination buffer too small */ - dst[p-1] = val; - p++; - } - - if (p == srclen) - return -2; /* Invalid framing. The terminating null byte should always be present in the input buffer. */ - - if (c != 1) - return -3; /* Invalid framing. The skip counter does not hit the end of the frame. */ - - return p-1; -} - -int cobs_encode(char *dst, char *src, size_t srclen) { - if (srclen > 254) - return -1; - - size_t p = 0; - while (p <= srclen) { - - char val; - if (p != 0 && src[p-1] != 0) { - val = src[p-1]; - - } else { - size_t q = p; - while (q < srclen && src[q] != 0) - q++; - val = (char)q-p+1; - } - - - *dst++ = val; - p++; - } - - *dst++ = 0; - - return 0; -} - -void print_usage(char *prog) { - fprintf(stderr, "Usage: %s [-p /dev/serial/some_port] [-b baudrate] dbfile.sqilte3\n", prog); -} - -void hexdump(const void* data, size_t size) { - char ascii[17]; - size_t i, j; - ascii[16] = '\0'; - for (i = 0; i < size; ++i) { - printf("%02X ", ((unsigned char*)data)[i]); - if (((unsigned char*)data)[i] >= ' ' && ((unsigned char*)data)[i] <= '~') { - ascii[i % 16] = ((unsigned char*)data)[i]; - } else { - ascii[i % 16] = '.'; - } - if ((i+1) % 8 == 0 || i+1 == size) { - printf(" "); - if ((i+1) % 16 == 0) { - printf("| %s \n", ascii); - } else if (i+1 == size) { - ascii[(i+1) % 16] = '\0'; - if ((i+1) % 16 <= 8) { - printf(" "); - } - for (j = (i+1) % 16; j < 16; ++j) { - printf(" "); - } - printf("| %s \n", ascii); - } - } - } -} - -int main(int argc, char *argv[]) { - - int opt; - int baudrate = 250000; - char *endptr = NULL; - char *port = NULL; - char *dbfile = NULL; - while ((opt = getopt(argc, argv, "p:b:")) != -1) { - switch (opt) { - case 'p': - port = optarg; - break; - case 'b': - baudrate = strtol(optarg, &endptr, 10); - if (errno == ERANGE || endptr == NULL || *endptr != '\0') { - fprintf(stderr, "Invalid baudrate \"%s\"\n", optarg); - print_usage(argv[0]); - } - break; - default: - print_usage(argv[0]); - exit(EXIT_FAILURE); - } - } - - if (port == NULL) { - DIR *le_dir = opendir("/dev/serial/by-id"); - if (le_dir == NULL) { - fprintf(stderr, "No serial port given and could not find any in /dev/serial\n"); - exit(EXIT_FAILURE); - - } - - struct dirent *de; - while ((de = readdir(le_dir))) { - if (de == NULL) { - fprintf(stderr, "No serial port given and could not find any in /dev/serial\n"); - exit(EXIT_FAILURE); - } - - if (!strncmp(de->d_name, ".", sizeof(de->d_name)) || - !strncmp(de->d_name, "..", sizeof(de->d_name))) - continue; - - if (port != NULL) { - fprintf(stderr, "No serial port given and found multiple candidates in /dev/serial\n"); - exit(EXIT_FAILURE); - } - - const char *prefix = "/dev/serial/by-id/"; - port = malloc(strlen(prefix) + sizeof(de->d_name) + 1); - if (port == NULL) { - fprintf(stderr, "Could not allocate memory\n"); - exit(EXIT_FAILURE); - } - strcpy(port, prefix); - strncat(port, de->d_name, sizeof(de->d_name)); - } - fprintf(stderr, "No port given, defaulting to %s\n", port); - closedir(le_dir); - } - - if (optind != argc - 1) { - fprintf(stderr, "Too few arguments\n"); - print_usage(argv[0]); - exit(EXIT_FAILURE); - } - - dbfile = argv[optind]; - printf("Using database file %s\n", dbfile); - fflush(stdout); - - int fd = open(port, O_RDWR|O_NOCTTY|O_SYNC); - if (fd < 0) { - fprintf(stderr, "Cannot open serial port: %s\n", strerror(errno)); - exit(EXIT_FAILURE); - } - - if (set_interface_attribs (fd, baudrate)) - exit(EXIT_FAILURE); - - sqlite3 *db; - if (sqlite3_open(dbfile, &db) != SQLITE_OK) { - fprintf(stderr, "Cannot open database: %s\n", sqlite3_errmsg(db)); - sqlite3_close(db); - exit(EXIT_FAILURE); - } - - char *errmsg; - if (sqlite3_exec(db, - "CREATE TABLE IF NOT EXISTS measurements (rx_time INTEGER, tx_seq INTEGER, rx_seq INTEGER, data BLOB);", - NULL, NULL, &errmsg) != SQLITE_OK) { - fprintf(stderr, "Error initializing databse: %s\n", errmsg); - sqlite3_close(db); - exit(EXIT_FAILURE); - } - - const char *insert_sql = "INSERT INTO measurements VALUES (?, ?, ?, ?)"; - sqlite3_stmt *insert_stmt; - if (sqlite3_prepare_v2(db, insert_sql, strlen(insert_sql), &insert_stmt, NULL) != SQLITE_OK) { - fprintf(stderr, "Error compiling SQL: %s\n", sqlite3_errmsg(db)); - sqlite3_close(db); - exit(EXIT_FAILURE); - } - - char buf [1024]; - int in_sync = 0, wpos = 0; - struct __attribute__((__packed__)) { - uint32_t crc; - uint8_t pid; - uint8_t _pad; - uint16_t seq; - uint16_t data[32]; - } packet; - struct __attribute__((__packed__)) { - uint8_t type; - uint8_t pid; - } wpacket; - char wbuf[4]; - - int epollfd = epoll_create1(0); - if (epollfd < 0) - goto epoll_err; - - #define MAX_EVENTS 10 - struct epoll_event ev, events[MAX_EVENTS]; - ev.events = EPOLLIN; - ev.data.fd = fd; - if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) < 0) - goto epoll_err; - - wpacket.type = 1; - wpacket.pid = 0; - cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); - write(fd, wbuf, sizeof(wbuf)); - - /* FIXME begin debug code */ - for (int i=0; i<32; i++) { - wpacket.type = 2; - wpacket.pid = packet.pid; - cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); - write(fd, wbuf, sizeof(wbuf)); - usleep(20); - } - /* FIXME end debug code */ - - int current_seq = -1; - uint64_t local_seq = 0; - while (23) { - int nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1); - if (nfds == -1) - goto epoll_err; - - if (nfds == 0) - continue; - - ssize_t n = read(fd, buf+wpos, sizeof(buf)-wpos); - printf("--- read wpos=%d n=%ld\n", wpos, n); - hexdump(buf+wpos, n); - if (n<0) { - if (errno == EAGAIN || errno == EINTR) - continue; - - fprintf(stderr, "Error reading from port: %s\n", strerror(errno)); - goto loop_err; - } - //printf("--- debug: read n=%d bytes at wpos=%d\n", n, wpos); - //fflush(stdout); - wpos += n; - - while (23) { - void *first_nul = memchr(buf, 0, wpos) ; - ssize_t first_nul_offx = first_nul - (void*)buf; - ssize_t remaining = wpos - first_nul_offx; - - if (!in_sync) { - if (first_nul) { - memmove(buf, first_nul+1, remaining-1); - wpos = remaining-1; - in_sync = 1; - continue; - - } else { - wpos = 0; - break; - } - } - - if (!first_nul) - break; - - printf("--- debug: first_nul=%p (idx=%ld) wpos=%d remaining=%ld\n", first_nul, first_nul_offx, wpos, remaining); - hexdump(buf, 80); - - int rc = cobs_decode((char *)&packet, sizeof(packet), buf, wpos); - if (rc < 0) { - printf("Framing error: rc=%d\n", rc); - goto it_err; - } - - /* Use zlib to calculate CRC32. The STM32 code calculates the CRC byte-wise, so we emulate this here. */ - uint32_t our_crc = 0; - if (rc > 0) { - uint8_t buf[4] = {0}; - for (int i=4; i<rc; i++) { - buf[3] = ((uint8_t *)&packet)[i]; - our_crc = crc32(our_crc, buf, sizeof(buf)); - } - } - - bool error = false; - /* Check CRC */ - if (our_crc != packet.crc) { - printf("CRC mismatch: seq=%d packet=%08x computed=%08x\n", packet.pid, packet.crc, our_crc); - error = true; - } - - /* Check device sequence number */ - int last_seq = current_seq; - int predicted_seq = (last_seq+1) % 0xffff; - if (!error) - current_seq = packet.seq; - if (last_seq >= 0 && packet.seq != predicted_seq) { - printf("SEQ mismatch: packet=%d computed=%d\n", packet.seq, predicted_seq); - error = true; - } - - if (error) - goto it_err; - - /* Write to database */ - struct timespec ts; - if (clock_gettime(CLOCK_REALTIME, &ts)) { - fprintf(stderr, "Error getting current wall-clock time: %s\n", strerror(errno)); - goto loop_err; - } - uint64_t timestamp = ts.tv_sec*1000 + ts.tv_nsec/1000000; - - if (sqlite3_bind_int(insert_stmt, 1, timestamp) != SQLITE_OK) - goto write_err; - - if (sqlite3_bind_int(insert_stmt, 2, packet.seq) != SQLITE_OK) - goto write_err; - - if (sqlite3_bind_int(insert_stmt, 3, local_seq) != SQLITE_OK) - goto write_err; - - if (sqlite3_bind_blob(insert_stmt, 4, packet.data, sizeof(packet.data), SQLITE_STATIC) != SQLITE_OK) - goto write_err; - - while ((rc = sqlite3_step(insert_stmt)) == SQLITE_BUSY) - ; - if (rc != SQLITE_DONE) - goto write_err; - - if (sqlite3_reset(insert_stmt) != SQLITE_OK) - goto write_err; - - if (sqlite3_clear_bindings(insert_stmt) != SQLITE_OK) - goto write_err; - - local_seq++; - - printf("OK: seq=%d crc=%08x\n", current_seq, packet.crc); - - /* send ACK reply */ - wpacket.type = 2; - wpacket.pid = packet.pid; - cobs_encode(wbuf, (char *)&wpacket, sizeof(wpacket)); - write(fd, wbuf, sizeof(wbuf)); - -it_err: - /* Fixup buffer for next iteration */ - if (remaining-1 > 0) { - printf(" ---memmove(buf=%p, first_nul+1=%p, remaining-1=%ld);-->\n", buf, first_nul+1, remaining-1); - memmove(buf, first_nul+1, remaining-1); - } - //hexdump(buf, 80); - fflush(stdout); - printf("--- continuing wpos=%d->%d\n", wpos, (int)(remaining-1)); - wpos = remaining-1; - } - } - - return 0; - -write_err: - fprintf(stderr, "Error writing to database: %s\n", sqlite3_errmsg(db)); - sqlite3_close(db); - return EXIT_FAILURE; - -epoll_err: - fprintf(stderr, "epoll error: %s\n", strerror(errno)); - -loop_err: - sqlite3_close(db); - return EXIT_FAILURE; -} diff --git a/gm_platform/fw/tw_test.py b/gm_platform/fw/tw_test.py deleted file mode 100644 index e329abd..0000000 --- a/gm_platform/fw/tw_test.py +++ /dev/null @@ -1,139 +0,0 @@ -#!/usr/bin/env python3 - -import os -from time import time -from binascii import hexlify -import enum -import struct -import zlib -import sys -import sqlite3 - -import serial -from cobs import cobs - - -class CtrlPacketTypes(enum.Enum): - RESET = 1 - ACK = 2 - RETRANSMIT = 3 - -def unpack_head(fmt, data): - split = struct.calcsize(fmt) - return [ *struct.unpack(fmt, data[:split]), data[split:] ] - -def ctrl_packet(ptype, pid=0): - return cobs.encode(struct.pack('BB', ptype.value, pid)) + b'\0' - -ctrl_reset = lambda: ctrl_packet(CtrlPacketTypes.RESET) -ctrl_ack = lambda pid: ctrl_packet(CtrlPacketTypes.ACK, pid) -ctrl_retransmit = lambda pid: ctrl_packet(CtrlPacketTypes.RETRANSMIT, pid) - -if __name__ == '__main__': - import argparse - parser = argparse.ArgumentParser() - - parser.add_argument('-b', '--baudrate', type=int, default=250000) - parser.add_argument('port', nargs='?', default=None) - parser.add_argument('dbfile') - args = parser.parse_args() - - if args.port is None: - try: - candidate, = os.listdir('/dev/serial/by-id') - args.port = os.path.join('/dev/serial/by-id', candidate) - print(f'No port given, guessing {args.port}') - - except: - print('No port given and could not guess port. Exiting.') - sys.exit(1) - - ser = serial.Serial(args.port, args.baudrate, timeout=1.0) - db = sqlite3.connect(args.dbfile) - db.execute('CREATE TABLE IF NOT EXISTS measurements (run_id INTEGER, rx_ts INTEGER, seq INTEGER, data BLOB)') - db.execute('''CREATE TABLE IF NOT EXISTS errors ( - run_id INTEGER, - rx_ts INTEGER, - type TEXT, - seq INTEGER, - pid INTEGER, - pid_expected INTEGER, - crc32 INTEGER, - crc32_expected INTEGER, - data BLOB)''') - run_id, = db.execute('SELECT IFNULL(MAX(run_id), -1) + 1 FROM measurements').fetchone() - - ser.flushInput() - ser.write(ctrl_reset()) - ser.flushOutput() - - last_pid = None - lines_written = 0 - cur = db.cursor() - capture_start = time() - while True: - #ser.write(cobs.encode(b'\x01\xff') + b'\0') - data = ser.read_until(b'\0') - for data in data.split(b'\0')[:-1]: # data always ends on \0 due to read_until, so split off the trailing empty bytes() - try: - if not data: - #print(f'{time():>7.3f} Timeout: resetting') - #ser.write(cobs.encode(b'\x01\xff') + b'\0') # reset - ser.write(ctrl_ack(0)) # FIXME delet this - cur.execute('INSERT INTO errors(run_id, rx_ts, type) VALUES (?, ?, "retransmission")', - (run_id, int(time()*1000))) - continue - - crc32, payload = unpack_head('I', cobs.decode(data)) - pid, seq, data = unpack_head('xBH', payload) - ts = time() - - # Calculate byte-wise CRC32 - our_crc = zlib.crc32(bytes(b for x in payload for b in (0, 0, 0, x))) - #log.append((time(), seq, crc32, our_crc, pid, data)) - bars = '\u2581\u2582\u2583\u2584\u2585\u2586\u2587\u2588' - sparkline = ''.join(bars[int(x/4096*8)] for x in struct.unpack('<32H', data)) - print(f'\033[38;5;249m{ts-capture_start:>10.3f}', - f'\033[94m{seq:05d}', - f'\033[38;5;243m{crc32:08x}', - f'\033[38;5;243m{our_crc:08x}', - f'\033[38;5;243m{pid}', - f'\033[0m{hexlify(data).decode()}', - f'\033[94m{sparkline}\033[0m', end='') - - error = False - suppress_ack = False - if crc32 != our_crc: - print(' \033[1;91mCRC ERROR\033[0m', end='') - suppress_ack = True - error = True - - if last_pid is not None and pid != (last_pid+1)%8: - print(' \033[1;93mPID ERROR\033[0m', end='') - error = True - else: - last_pid = pid - - if not suppress_ack: - ser.write(ctrl_ack(pid)) - ser.flushOutput() - - if not suppress_ack: - cur.execute('INSERT INTO measurements VALUES (?, ?, ?, ?)', (run_id, int(ts*1000), seq, data)) - if error: - cur.execute('INSERT INTO errors VALUES (?, ?, "pid", ?, ?, ?, ?, ?, ?)', - (run_id, int(ts*1000), seq, pid, (last_pid+1)%8, crc32, our_crc, data)) - - print() - lines_written += 1 - if lines_written == 80: - lines_written = 0 - print('\033[2J\033[H', end='') - delta = ts-capture_start - print(f'\033[7mRun {run_id}, capturing for {delta//3600//24:> 3.0f}:{delta//3600%24:02.0f}:{delta//60%60:02.0f}:{delta%60:06.3f}\033[0m') - db.commit() - - except Exception as e: - print(e, len(data)) - ser.write(ctrl_ack(0)) # FIXME delet this - |